首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  9篇
  2012年   1篇
  2007年   1篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Multiple roles for Hedgehog signaling in zebrafish pituitary development   总被引:1,自引:0,他引:1  
The endocrine-secreting lobe of the pituitary gland, or adenohypophysis, forms from cells at the anterior margin of the neural plate through inductive interactions involving secreted morphogens of the Hedgehog (Hh), fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) families. To better understand when and where Hh signaling influences pituitary development, we have analyzed the effects of blocking Hh signaling both pharmacologically (cyclopamine treatments) and genetically (zebrafish Hh pathway mutants). While current models state that Shh signaling from the oral ectoderm patterns the pituitary after placode induction, our data suggest that Shh plays a direct early role in both pituitary induction and patterning, and that early Hh signals comes from adjacent neural ectoderm. We report that Hh signaling is necessary between 10 and 15 h of development for induction of the zebrafish adenohypophysis, a time when shh is expressed only in neural tissue. We show that the Hh responsive genes ptc1 and nk2.2 are expressed in preplacodal cells at the anterior margin of the neural tube at this time, indicating that these cells are directly receiving Hh signals. Later (15-20 h) cyclopamine treatments disrupt anterior expression of nk2.2 and Prolactin, showing that early functional patterning requires Hh signals. Consistent with a direct role for Hh signaling in pituitary induction and patterning, overexpression of Shh results in expanded adenohypophyseal expression of lim3, expansion of nk2.2 into the posterior adenohypophysis, and an increase in Prolactin- and Somatolactin-secreting cells. We also use the zebrafish Hh pathway mutants to document the range of pituitary defects that occur when different elements of the Hh signaling pathway are mutated. These defects, ranging from a complete loss of the adenohypophysis (smu/smo and yot/gli2 mutants) to more subtle patterning defects (dtr/gli1 mutants), may correlate to human Hh signaling mutant phenotypes seen in Holoprosencephaly and other congenital disorders. Our results reveal multiple and distinct roles for Hh signaling in the formation of the vertebrate pituitary gland, and suggest that Hh signaling from neural ectoderm is necessary for induction and functional patterning of the vertebrate pituitary gland.  相似文献   
2.
Atlantic salmon juveniles reared at constant temperature (9–10°C) were exposed to four photoperiod treatment and sampled every 2 weeks from January through May. Fish reared under normal photoperiod exhibited eight-and three fold increases in plasma growth hormone and gill Na+, K+-ATPase activity, respectively, between January and April. Fish exposed to abrupt increases in daylength (LD 15:9) in February or March responded with earlier increases in plasma growth hormone and gill Na+, K+-ATPase activity, and earlier decreases in condition factor relative to fish in the normal photoperiod group. Fish maintained under short daylength (LD 9:15) from January to May exhibited delayed and muted increases in plasma growth hormone and gill Na+, K+-ATPase activity. Plasma thyroxine exhibited a 2.5-fold increase from February to late March in the normal photoperiod group, was generally lower in the LD 9:15 group, but exhibited no obvious response to abrupt increases in daylength. There was an increase in plasma 3,5,3-triiodo-l-thyronine with time in all groups (43–80%) but no significant response to photoperiod. Plasma levels of somatostatin-25 were highest in the LD 9:15 group, but there was no detectable response to increased daylength in any of the photoperiod treatments. The results indicate that plasma growth hormone is responsive to increased daylength and may be causally related to subsequent increases in gill Na+, K+-ATPase.Abbreviations ANOVA two-way analysis of variance - BCA bicinchoninic acid - BSA Bovine serum albumin - EDTA ethylene diamine tetraacetic acid - ELISA enzyme-linked immunosorbent assay - EST eastern standard time - GH growth hormone - GLU Glucagen - IgG Immunoglobulin G - INS Insulin - LDN Simulated natural photoperiod - RIA radio immuno assay - RIA radio immuno assay - SEI Sucrose EDTA imidazole - SS-25 somatostatin-25 - SW sea water - T 3 3,5,3 triiodo-l-thyronine - T 4 thyroxine  相似文献   
3.
The role of somatolactin (SL) in the regulation of energy homeostasis in gilthead sea bream (Sparus aurata) has been analysed. First, a down-regulation of plasma SL levels in response to gross shifts in dietary amino acid profile and the graded replacement of fish meal by plant protein sources (50%, 75% and 100%) has been observed. Thus, the impaired growth performance with changes in dietary amino acid profile and dietary protein source was accompanied by a decrease in plasma SL levels, which also decreased over the course of the post-prandial period irrespective of dietary nitrogen source. Secondly, we examined the effect of SL and growth hormone (GH) administration on voluntary feed intake. A single intraperitoneal injection of recombinant gilthead sea bream SL (0.1 microg/g fish) evoked a short-term inhibition of feed intake, whereas the same dose of GH exerted a marked enhancement of feed intake that still persisted 1 week later. Further, we addressed the effect of arginine (Arg) injection upon SL and related metabolic hormones (GH, insulin-like growth factor-I (IGF-I), insulin and glucagon) in fish fed diets with different nitrogen sources. A consistent effect of Arg injection (6.6 micromol/g fish) on plasma GH and IGF-I levels was not found regardless of dietary treatment. In contrast, the insulinotropic effect of Arg was found irrespective of dietary treatment, although the up-regulation of plasma glucagon and glucose levels was more persistent in fish fed a fish meal based diet (diet FM) than in those fed a plant protein diet with a 75% replacement (diet PP75). In the same way, a persistent and two-fold increase in plasma SL levels was observed in fish fed diet FM, whereas no effect was found in fish fed diet PP75. Taken together, these findings provide additional evidence for a role of SL as a marker of energy status, which may be perceived by fish as a daily and seasonal signal of abundant energy at a precise calendar time.  相似文献   
4.
Somatolactin (SL) plays an essential role in body-color regulation in medaka and is encoded by the color interfere (ci) locus. The ci mutant fish possess constitutively increased numbers of leucophores and a concomitant decrease in visible xanthophores. However, the mechanism of action of SL on these cell types, and the role of SL in body-color regulation in other species, is unknown. In this study, we verified an SL–xanthophore relationship in ci mutant fish using the leucophore free (lf) gene. Histological observation of lf larvae indicated that these mutants do not possess differentiated leucophores. The cilf double mutant, whose genotype was confirmed using DNA markers, lacked leucophores; however, the number of xanthophores remained low, demonstrating that leucophores are not necessary for mediating SL signaling to xanthophores. This finding suggests a conserved function for SL in xanthophore regulation across species, rather than the evolution of a medaka-specific and leucophore-dependent role of SL in body-color regulation. Our results also demonstrate that the lf gene has an indispensable role in leucophore development epistatic to SL signaling. The lf gene has not been cloned. The high-resolution recombination map surrounding the lf locus constructed in this study, together with medaka whole genome sequences that will be released soon, will allow the rapid cloning of the lf gene by forward genetic approaches.  相似文献   
5.
6.
7.
Summary We report here on the cellular localization in the fish pituitary of somatolactin (SL), a putative new pituitary hormone related to growth hormone and prolactin, which has been recently identified in the piscine pituitary gland. Immunocytochemical staining, using anti-cod SL serum, revealed that in the cod pituitary gland, SL is produced by cells in the intermediate lobe, bordering the neural tissue. These cells, staining weakly with periodic-acid-Schiff (PAS), are distinct from the melanocyte stimulating hormone (MSH) cells which, as in all teleosts, are PAS-negative. SL-immunoreactivity was observed in the same location in all other teleost species examined: flounder, rainbow trout, killifish, molly, catfish and eel. In most fish the SL-immunoreactive cells are either strongly or weakly PAS-positive but in rainbow trout are chromophobic, indicating that the SL protein can probably exist in glycosylated and non-glycosylated forms. Thus, in demonstrating the cellular localization of SL, this study provides the first identification of the enigmatic, second cell-type of the fish pars intermedia.  相似文献   
8.
Two cognate hormones, growth hormone (GH) and somatolactin (SL), control several important physiological processes in vertebrates. Knowledge about GH and its receptor (GHR) has accumulated over the last decades. However, much less is known about SL and its receptor (SLR). SL is found only in fish (including lungfish), suggesting that it was present in the common ancestor of vertebrates, but was lost secondarily in the lineage leading to land vertebrates after the lungfish branched off. SLR was suggested to be a duplicated copy of GHR acquired only in teleosts via the fish-specific genome duplication (FSGD). This scenario (i.e., the existence of SL but not SLR in the vertebrate ancestors) is intriguing but contested. In this study, we first evaluated the plausibility of this scenario through synteny analyses and found that the loci for GHR and SLR are located in syntenic genomic positions, whereas the loci for GH and SL are not. Next, we cloned GHRs of lungfish and sturgeon, which possess SL but did not undergo the FSGD (i.e., they should not possess SLR). Their phylogenetic positions in the GHR/SLR gene tree further support the fish-specific scenario for the GHR–SLR duplication. Interestingly, their sequences share greater similarity with teleost SLRs and reptilian/amphibian GHRs than with the GHRs of mammals, birds, and teleosts. On the basis of these results, we discuss the validity of the nomenclature of the teleost-specific copy of GHR as SLR and an ancestral receptor(s) for SL before the evolution of SLR during the FSGD.  相似文献   
9.
The gene expression and intracellular localization of somatolactin (SL), a putative pituitary hormone structurally related to both growth hormone and prolactin, were investigated in the pituitary of rainbow trout, Oncorhynchus mykiss. Using an in situ hybridization technique, we demonstrated the gene expression of the SL molecule in cells bordering the neurohypophysial tissue in the pars intermedia. These cells were identified immunocytochemically as SL-cells on the adjacent section. Electron-microscopic immunocytochemistry by means of the protein A-gold technique, also revealed that the SL-immunoreactivity was located mostly on the secretory granules in SL-cells. Our findings clearly indicate that SL is biosynthesized and stored in the granules in these cells.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号