首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2009年   1篇
  1995年   3篇
  1994年   2篇
  1991年   1篇
  1990年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Metabolic shift analysis at high cell densities   总被引:2,自引:0,他引:2  
Abstract: In high cell density cultures it is virtually inevitable that the environment to which the cells are exposed is heterogeneous. Thus, with suspended cultures, individual cells are subject to temporal changes in their environment whereas with aggregated or immobilized cells, the culture can be considered as being formed by a number of subpopulations, each with its own environmental characteristics. In addition, in a high cell density environment, high concentrations of end products may negatively influence the growth rate. This may result in the selection of organisms with an altered metabolic behaviour or with a decreased sensitivity to the adverse effects of the product. We discuss the consequences of this heterogeneity with regard to carbon source metabolism in view of the ability of many bacterial species to adapt to environmental conditions. Selection of variant organisms was found to occur with Clostridium butyricum when grown for a prolonged time in a medium containing approx. I-50 mM glucose. In contrast to the original strain, these variants could sustain a high maximal growth rate in the presence of butyric acid. In addition, they had acquired the capacity to spontaneously form aggregates and were able to carry out a completely solventogenic fermentation. Heterogeneous metabolic activity in aggregated cells is demonstrated with cultures of Lactobacillus laevolacticus , an aggregateforming lactic acid bacterium that converts glucose completely to o-lactate. By using microelectrodes, we show that the fraction of metabolically active cells decreases with increasing aggregate size: in larger aggregates steep pH gradients occur with the effect that only the outer layer of the aggregate is metabolically active, i.e. contributes to lactic acid formation, whereas with smaller aggregates all cells remain active. As a result, the net specific lactic acid production rate of the population as a whole is not invariably increased with increased aggregate size.  相似文献   
2.
New isolates of solventogenic bacteria exhibited high hemicellulolytic activity. They produced butanol and acetone with high selectivity for butanol (about 80% of butanol from the total solvent yield). Their 16S rDNA sequence was 99% identical to that of Clostridium saccharobutylicum. The genes responsible for the last steps of solventogenesis and encoding crotonase, butyryl-CoA dehydrogenase, electron-transport protein subunits A and B, 3-hydroxybutyryl-CoA dehydrogenase, alcohol dehydrogenase, CoA-transferase (subunits A and B), acetoacetate decarboxylase, and aldehyde dehydrogenase were identified in the new C. saccharobutylicum strain Ox29 and cloned into Escherichia coli. The genes for crotonase, butyryl-CoA dehydrogenase, electron-transport protein subunits A and B, and 3-hydroxybutyryl-CoA dehydrogenase composed the bcs-operon. A monocistronic operon containing the alcohol dehydrogenase gene was located downstream of the bcs-operon. Genes for aldehyde dehydrogenase, CoA-transferase (subunits A and B), and acetoacetate decarboxylase composed the sol-operon. The gene sequences and the gene order within the sol- and bcs-operons of C. saccharobutylicum Ox29 were most similar to those of Clostridium beijerinckii. The activity of some of the bcs-operon genes, expressed in heterologous E. coli, was determined.  相似文献   
3.
Summary The conjugative transposon Tn916 was used for mutagenesis ofClostridium acetobutylicum ATCC 824. Tetracycline-resistant mutants were screened for loss of granulose synthesis and five classes of granulose mutants, that contained single transposon insertions, were identified on the basis of altered solvent production. Class 1 mutants did not make acetone or butanol, lacked activity of enzymes induced during solventogenesis, and did not sporulate, indicating that they are regulatory mutants. The class 2 mutant strains also did not produce acetone but did form small amounts of butanol and ethanol while the class 3 mutants produced low amounts of all solvents. Class 4 and 5 mutants produced essentially the same or higher amounts of solvents than the parent strain. Transposon insertions in the class 1 mutants were used as markers for in vitro synthesis of flanking chromosomal DNA using Tn916-specific primers. The DNA fragments were labeled to produce specific probes. Transposon insertion sites in the chromosomes of 13 different class 1 regulatory mutants were compared by hybridization of the specific probes to Southern blots of restriction endonuclease-digested parental chromosomal DNA. Insertions in two mutants appeared to be, in the same region of the chromosome. These results predict, that multiple regulatory elements are required to induce solvent production and sporulation.  相似文献   
4.
Clostridial strain degeneration   总被引:2,自引:0,他引:2  
Abstract: Strain degeneration, the loss of the capacity to produce solvents and form spores, typically occurs when Clostridium acetobutylicum and related clostridia are repeatedly subcultured in batch culture or grown in continuous culture, as opposed to being grown from germinated, heat-treated spores. Several mechanisms for degeneration have been identified thus far. (i) Degeneration can be caused by excessive acidification of the culture during exponential growth. We present data interpreted to mean that C. beijerinckii (formerly C. acetobutylicum ) NCIMB 8052 cells ferment glucose to acetic and butyric acids at an uncontrolled rate, so that, during rapid growth, the rate of acid production can exceed the rate of induction of the solventogenic pathway enzymes. As a result, the medium pH drops to bactericical levels, and the cells cannot switch to solventogenesis and sporulation. The clostridia seem to be poised either to produce excess acids, or to initiate solventogenesis, depending on small differences in the rates of growth. (ii) We have isolated transposon-insertion mutants of C. beijerinckii NCIMB 8052 that are resistant to degeneration, suggesting the involvement of a regulatory region of the clostridial chromosome. (iii) Involvement of a global regulatory gene has been inferred in C. beijerinckii NCIMB 8052 which degenerates irreversibly in chemostat culture. (iv) Impairment of butanol formation due to a defect in NADH generation has been reported in an oligosporogenous strain which can revert to the non-degenerate phenotype. (v) In continuous culture, degenerate cells may be selected because they continue to divide, while the non-degenerate cells stop dividing and start differentiating.  相似文献   
5.
Abstract The expression of all sequenced acetone and butanol formation genes was followed using mRNA analysis during the shift from acidogenesis to solventogenesis in continuous culture of Clostridium acetobutylicum . Differential induction or derepression of the bdhA, bdhB , and adc genes as well as the sol operon was observed during the pH-induced shift. The order of induction of the three different butanol dehydrogenase genes was found to be bdhA-sol operon- bdhB , offering an explanation for the physiological role of the respective enzymes. Peak mRNA synthesis of an autolysin and a heat shock gene at the onset of solventogenesis was detected in addition to the above-mentioned genes. None of the hitherto sequenced genes of butanologenic enzymes was found to be involved in butanol production during the Methyl viologen-induced shift, indicating the presence of yet unknown genes encoding alcohol and aldehyde dehydrogenases.  相似文献   
6.
Summary Using a defined medium in chemostat culture, an inverse relationship between the biomass concentration and the specific butanol productivity has been observed. It is suggested that this is due to the cell population not being homogeneous, and that a change in the nutrient balance leads to a cha in the relative proportions of acidogenic, solventogenic and inert cells (spores).  相似文献   
7.
Abstract Growth of the cellulolytic acidogen Clostridium strain C7 undergoing progressive nutrient limitation has been compared with that of the solventogen Clostridium beijerinckii . On the basis of cellulase secretion, differentiation of dissimilatory metabolism, and sporulation, different survival strategies by the two clostridia in progressive nutrient limitation can be discerned. In addition, the metabolic differentiation to butanol production in Clostridium beijerinckii can be specifically associated with the sporulation stage in which the forespore is enclosed by double membranes but not by a spore coat.  相似文献   
8.
Summary Experiments have been performed in batch fermentation, using a defined medium, to investigate the effects of phosphate and ammonium ion concentrations on solvent production usingClostridium acetobutylicum. Solvent production occurred under conditions of either ammonium- or phosphate-limitation, but the optimum conditions were observed to be where both of these nutrients were slightly in excess of growth requirements. A greater excess of nutrients caused the fermentation to be acidogenic rather than solventogenic.  相似文献   
9.
Abstract: A physical map of the Clostridium beijerinckii (formerly Clostridium acetobutylicum ) NCIMB 8052 chromosome has been constructed, encompassing about 90 rare restriction sites. The 14 rrn operons together with 40 genes have been assigned positions on the map. Genetic analysis and gene transfer have been developed in this organism to enable in vivo analysis of the roles of cloned genes using marker replacement technology. Experiments using the available genetic tools have shown that spo0A plays a cardinal role in controlling several aspects of the transition from exponential growth to stationary phase in C. beijerinckii . These include initiation of sporulation, accumulation of the storage polysaccharide, granulose, and production of acetone and butanol. Several C. beijerinckii and C. acetobutylicum genes concerned with fermentative metabolism, whose expression is modulated at the onset of solventogenesis, contain sequence motifs resembling 0A boxes in their 5' regulatory regions. This invites the speculation that they are under direct control of Spo0A, and additional data are now required to test this prediction.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号