首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   3篇
  国内免费   3篇
  2022年   4篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   9篇
  2013年   7篇
  2012年   3篇
  2011年   6篇
  2010年   4篇
  2009年   8篇
  2008年   3篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   7篇
  2003年   1篇
  2001年   3篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
排序方式: 共有109条查询结果,搜索用时 31 毫秒
1.
A mechanism of respiration-dependent water uptake enhanced by auxin   总被引:2,自引:0,他引:2  
Summary There are many contradictory observations on the mechanohydraulic relation of growing higher plant cells and tissues. Graphical analysis of the simultaneous equations which govern irreversible wall yielding and water absorption has made more comprehensive the understanding of this relation when relative growth rate is plotted against turgor pressure. It suggests that some respiration-dependent and auxin sensitive process might regulate the difference of osmotic potential between cells and water source. Based on anatomical and electrophysiological knowledge of the pea stem xylem, we propose the wall canal system as the mechanism of respiration-dependent water uptake which is sensitive to auxin. This system consists of the xylem apoplastic walls, the xylem proton pumps, active solute uptake system and cell membranes. In the simplest case, third-order simultaneous differential equations are involved. Numerical analysis showed that net uptake of solutes enables water to be taken up against an opposing gradient of water potential. The behaviour of this wall canal system describes well the mechano-hydraulic relation of enlarging plant cells and tissues. Recent typical, but incompatible, interpretations of this relation are critically discussed based on our model.Abbreviations V the volume of enlarging symplast - the average extensibility of the wall - Pi turgor pressure - Y the yield threshold of the wall - L the relative hydraulic conductance - the solute reflection coefficient of the plasmamembrane - Ci the osmotic concentration of the symplast cells - Cx the osmotic concentration of the xylem vessels - Px hydrostatic pressure in the xylem vessels - R the gas constant - T absolute temperature - o water potential of xylem fluid - i water potential of symplast cells  相似文献   
2.
Previous work has shown that high molecular weight compounds were released from Saccharomyces bisporus by -mercaptoethanol, 2 M KCl, 0.5 M KCl and osmotic shock without affecting viability of the cells. In this current experiment, it was shown that low molecular weight compounds were also eluted when cells were treated in sequence with the same reagents. Alanine, glutamate, serine, an unidentified amino acid, glucose, glycerol, and arabitol were all eluted by each of the first three reagents. The osmotic shock eluate contained a larger number and quantity of amino acids than the first three eluates but, otherwise, the compounds in this eluate were the same. One hundred percent of the cellular glycerol and 65–70% of the total amounts of the other above mentioned solutes were released by the 4 eluting treatments. A hot water treatment was needed to extract the remainder of these solutes. The hot water extract also contained almost all the cellular proline. It was suggested that the elutable solutes are contained by cells in compartments (or vesicles) whose membranes are accessible to the eluting reagents without affecting the plasmalemma.  相似文献   
3.
Culture conditions which lead to the intracellular accumulation of arabitol and mannitol in Geotrichum candidum were investigated. The accumulation of arabitol was dependent on the concentrations of metabolizable hexoses, the non-metabolizable disaccharide sucrose, NaCl and KCl in the growth medium. In media containing 2% (w/v) glucose, fructose or l-sorbose cultures contained only mannitol after 48 h or 72 h growth. In media containing 10% (w/v) to 30% (w/v) glucose, or 25% (w/v) fructose or l-sorbose there was an increase in the total concentration of intracellular polyol due to the accumulation of arabitol. This pentitol was also found to accumulate intracellularly when the organism was grown in medium containing 34% (w/v) sucrose, 0.7 M NaCl or 0.7 M KCl in addition to 2% (w/v) glucose. Under the conditions tested no change in the accumulation of mannitol or ethanol-soluble carbohydrate, believed to be primarily composed of trehalose, was evident.Intracellular polyol was released during incubation of arthrospores obtained from media containing 25% or 10% glucose, in distilled water at 25° C, but no polyol was released under these conditions from arthrospores obtained from growth in 2% glucose medium.  相似文献   
4.
Incorporation of ethanol (1.0 or 1.25 M) into exponential-phase cultures of Saccharomyces cerevisiae NCYC 366 growing anaerobically in a medium supplemented with ergosterol and an unsaturated fatty acid caused a retardation in growth rate, which was greater when the medium contained oleic rather than linoleic acid. Ethanol incorporation led to an immediate drop in growth rate, and ethanol-containing cultures grew at the slower rate for at least 10 h. Incorporation of ethanol (0.5 M) into buffered (pH 4.5) cell suspensions containing d-[6-3H] glucose, d-[1-14C] glucosamine, l-[U-14C] lysine or arginine, or KH2 32PO4 lowered the rate of solute accumulation by cells. Rates of accumulation of glucose, lysine and arginine were retarded to a greater extent when cells had been grown in the presence of oleic rather than linoleic acid. This difference was not observed with accumulation of phosphate. Ethanol was extracted from exponential-phase cells by four different methods. Cells grown in the presence of linoleic acid contained a slightly, but consistently, lower concentration of ethanol than cells grown in oleic acid-containing medium. The ethanol concentration in cells was 5–7 times greater than that in the cell-free medium.  相似文献   
5.
Exposure to various environmental stresses induces metabolic rate depression in many animal species, an adaptation that conserves energy until the environment is again conducive to normal life. The African clawed frog, Xenopus laevis, is periodically subjected to arid summers in South Africa, and utilizes entry into the hypometabolic state of estivation as a mechanism of long term survival. During estivation, frogs must typically deal with substantial dehydration as their ponds dry out and X. laevis can endure > 30% loss of its body water. We hypothesize that microRNAs play a vital role in establishing a reversible hypometabolic state and responding to dehydration stress that is associated with amphibian estivation. The present study analyzes the effects of whole body dehydration on microRNA expression in three tissues of X. laevis. Compared to controls, levels of miR-1, miR-125b, and miR-16-1 decreased to 37 ± 6, 64 ± 8, and 80 ± 4% of control levels during dehydration in liver. By contrast, miR-210, miR-34a and miR-21 were significantly elevated by 3.05 ± 0.45, 2.11 ± 0.08, and 1.36 ± 0.05-fold, respectively, in the liver. In kidney tissue, miR-29b, miR-21, and miR-203 were elevated by 1.40 ± 0.09, 1.31 ± 0.05, and 2.17 ± 0.31-fold, respectively, in response to dehydration whereas miR-203 and miR-34a were elevated in ventral skin by 1.35 ± 0.05 and 1.74 ± 0.12-fold, respectively. Bioinformatic analysis of the differentially expressed microRNAs suggests that these are mainly involved in two processes: (1) expression of solute carrier proteins, and (2) regulation of mitogen-activated protein kinase signaling. This study is the first report that shows a tissue specific mode of microRNA expression during amphibian dehydration, providing evidence for microRNAs as crucial regulators of metabolic depression.  相似文献   
6.
A series of cellular-automata (CA) models have been created, simulating relationships between water (or aqueous solutions) and solid surfaces of differing hydropathic (i.e., hydrophilic or hydrophobic) nature. Both equilibrium- and dynamic-flow models were examined, employing simple breaking and joining rules to simulate the hydropathic interactions. The CA simulations show that water accumulates near hydrophilic surfaces and avoids hydrophobic surfaces, forming concave-up and concave-down meniscuses, resp., under equilibrium conditions. In the dynamic-flow simulations, the flow rate of water was found to increase past a wall surface as the surface became less hydrophilic, reaching a maximum rate when the solid surface was of intermediate hydropathic state, and then declining with further increase in the hydrophobicity of the surface. Solution simulations show that non-polar solutes tend to achieve higher concentrations near hydrophobic-wall surfaces, whereas other hydrophobic/hydrophilic combinations of solutes and surfaces do not show such accumulations. Physical interpretations of the results are presented, as are some possible biological consequences.  相似文献   
7.
Fricke W 《Planta》2004,219(3):515-525
The aim of the present study was to test whether rapid accumulation of solutes in response to salinity in leaf tissues of barley (Hordeum vulgare L.) contributes to recovery and maintenance of residual elongation growth. Addition of 100 mM NaCl to the root medium caused an immediate reduction close to zero in elongation velocity of the growing leaf 3. After 20–30 min, elongation velocity recovered suddenly, to 40–50% of the pre-stress level. Bulk osmolality increased first, after 60 min, significantly in the proximal half of the elongation zone. Over the following 3 days, osmolality increases became significant in the distal half of the elongation zone, the adjacent, enclosed non-elongation zone and finally in the emerged portion of the blade. The developmental gradient and time course in osmolality increase along the growing leaf was reflected in the pattern of solute (Cl, Na and K) accumulation in bulk tissue and epidermal cells. The partitioning of newly accumulated solutes between epidermis and bulk tissue changed with time. Even though solute accumulation does not contribute to the sudden and partial growth recovery 20–30 min after exposure to salt, it does facilitate residual growth from 1 h onwards. This is due to a high sink strength for solutes of the proximal part of the growth zone and its ability to accumulate solutes rapidly and at high rates.Abbreviations EDX analysis Energy-dispersive X-ray analysis - LEV Leaf elongation velocity - LVDT Linear variable differential transformer - REGR Relative elemental growth rate  相似文献   
8.
Umbilical cord blood (UCB) is an accepted treatment for the reconstitution of bone marrow function following myeloablative treatment predominantly in children and juveniles. Current cryopreservation protocols use methods established for bone marrow and peripheral blood progenitors cells that have largely been developed empirically. Such protocols can result in losses of up to 50% of the nucleated cell population: losses unacceptable for cord blood. The design of optimal cryopreservation regimes requires the development of addition and elution protocols for the chosen cryoprotectant; protocols that minimise damaging osmotic transients. The biophysical parameters necessary to model the addition and elution of dimethyl sulphoxide to and from cord blood CD34(+) cells have been established. An electronic particle counting method was used to establish the volumetric response of CD34(+) cells to changes in osmolality of the suspending medium. The non-osmotic volume of the cell was 0.27 of the cells isotonic volume. The permeation kinetics of CD34(+) cells to water and dimethyl sulphoxide were investigated at two temperatures, +1.5 and +20 degrees C. Values for the hydraulic conductivity were 3.2 x 10(-8) and 2.8 x 10(-7)cm/atm/s, respectively. Values for the permeability of dimethyl sulphoxide at these temperatures were 4.2 x 10(-7) and 7.4 x 10(-6)cm/s, respectively. Clonogenic assays indicated that the ability of CD34(+) cells to grow and differentiate was significantly impaired outside the limits 0.6-4x isotonic. Based on the Boyle van't Hoff plot, the tolerable limits for cell volume excursion were therefore 45-140% of isotonic volume. The addition and elution of cryoprotectant was modelled using a two-parameter model. Current protocols for the addition of cryoprotectant based on exposure at +4 degrees C would require additional time for complete equilibration of the cryoprotectant. During the elution phase current protocols are likely to cause CD34(+) cells to exceed tolerable limits. The addition of a short holding period during elution reduces the likelihood of this occurring.  相似文献   
9.
In many electroporation applications mass transport in biological tissue is of primary concern. This paper presents a theoretical advancement in the field and gives some examples of model use in electroporation applications. The study focuses on post-treatment solute diffusion.  相似文献   
10.
To cryopreserve cells, it is essential to avoid intracellular ice formation during cooling and warming. One way to do so is to subject them to procedures that convert cell water into a non-crystalline glass. Current belief is that to achieve this vitrification, cells must be suspended in very high concentrations of glass-inducing solutes (i.e., ?6 molal) and cooled at very high rates (i.e., ?1000 °C/min). We report here that both these beliefs are incorrect with respect to the vitrification of 8-cell mouse embryos. In this study, precompaction 8-cell embryos were vitrified in several dilutions of EAFS10/10 using various cooling rates and warming rates. Survival was based on morphology, osmotic functionality, and on the ability to develop to expanded blastocysts. With a warming rate of 117,500 °C/min, the percentages of embryos vitrified in 1×, 0.75×, and 0.5× EAFS that developed to blastocysts were 93%, 92%, and 83%, respectively. And the percentages of morphological survivors that developed to expanded blastocysts were 100%, 92%, and 97%, respectively. Even when the solute concentration of the EAFS was reduced to 33% of normal, we obtained 40% functional survival of these 8-cell embryos.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号