首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6310篇
  免费   736篇
  国内免费   2178篇
  2024年   29篇
  2023年   227篇
  2022年   264篇
  2021年   311篇
  2020年   296篇
  2019年   317篇
  2018年   319篇
  2017年   318篇
  2016年   312篇
  2015年   264篇
  2014年   336篇
  2013年   487篇
  2012年   264篇
  2011年   334篇
  2010年   288篇
  2009年   404篇
  2008年   400篇
  2007年   420篇
  2006年   479篇
  2005年   382篇
  2004年   322篇
  2003年   283篇
  2002年   210篇
  2001年   187篇
  2000年   176篇
  1999年   149篇
  1998年   140篇
  1997年   136篇
  1996年   118篇
  1995年   109篇
  1994年   97篇
  1993年   93篇
  1992年   75篇
  1991年   67篇
  1990年   65篇
  1989年   40篇
  1988年   36篇
  1987年   46篇
  1986年   59篇
  1985年   66篇
  1984年   57篇
  1983年   31篇
  1982年   58篇
  1981年   39篇
  1980年   40篇
  1979年   43篇
  1978年   7篇
  1977年   6篇
  1975年   4篇
  1971年   4篇
排序方式: 共有9224条查询结果,搜索用时 31 毫秒
1.
Nitrogen fertigation of greenhouse-grown cucumber   总被引:2,自引:0,他引:2  
Summary This greenhouse study investigated the response of trickle-irrigated cucumber (Cucumis sativa cv. ‘Petita’) to three N levels applied with every irrigation via the irrigation stream. The plants were grown in pots filled with 12 kg of soil. Water containing 5.8, 11.8, or 17.8 mmol N/l, and uniformly supplied with 2.0 and 3.9 mmol/l of P and K, respectively, was applied two to three times daily. In all treatments of 0.3 leaching fraction was allowed. The resulting total N applications were 15.7, 31., and 47.2 g N/plant. The total amount of water applied was 1851/plant. Total N and NO3-N, in lajinae and petioles, increased with increasing N level whereas P and K in generated decreased. Although different NO3/NH4 ratios in the treatments may have influeced the response to N, it could be concluded that the highest yield was obtained with 11.8 mmol N/1 due to increased number of fruit. In the root volume of this treatment the NO3-N concentration in the soil solution was aroun 7 mmol/1 for most of the growing season. The dry matter concentration of fruits was not affected by the N levels. It was concluded that 11.8 mmol N/1 applied with every irrigation via the irrigation stream is adequate to cover the needs of greenhous-grown cucumber for higher yield (9.42 kg/plant over a harvesting period of 93 days).  相似文献   
2.
Summary Amylase, dehydrogenase, arylsulphatase and phosphatases activities were measured in a clay-loam soil amended with seven different crop residues. All enzyme activities, except phosphomonoesterase, were generally higher in the derived soil samples than in the original soil. Addition of tobacco and sunflower residues caused an increase on most of the enzyme activities while tomato residues increased only the amylase and phosphodiesterase activities. As the enzyme activities were positively correlated to each other, a common source of the enzymes is suggested even though the coefficients of correlation demonstrate that only a low percentage of the variability can be ascribed to the interactions among enzyme activities.  相似文献   
3.
Enumeration of denitrifying microbial populations in turf   总被引:2,自引:0,他引:2  
Summary Denitrifer populations of a silt and silt loam soil under a Kentucky bluegrass turf were enumerated using the most probable number (MPN) procedure. The influence of soil texture, soil depth, soil moisture, and additions of nitrate fertilizer on denitrifier populations were determined. Saturated soil conditions increased denitrifier populations 87-fold in the silt soil and 121-fold in the silt loam soil. Denitrifier populations did not differ significantly between soil depths and additions of fertilizer nitrate did not influence populations.  相似文献   
4.
To study bacterial behavior under varying hydration conditions similar to surface soil, we have developed a system called the Pressurized Porous Surface Model (PPSM). Thin liquid films created by imposing a matric potential of − 0.4 MPa impact gene expression and colony development in Pseudomonas putida.  相似文献   
5.
Contrary to our expectations, soil salinity and moisture explained little of the spatial variation in plant establishment in the upper intertidal marsh of three southern California wetlands, but did explain the timing of germination. Seedlings of 27 species were identified in 1996 and 1997. The seedlings were abundant (maximum densities of 2143/m2 in 1996 and 1819/m2 in 1997) and predominantly annual species. CCAs quantified the spatial variation in seedling density that could be explained by three groups of predictor variables: (1) perennial plant cover, elevation and soil texture (16% of variation), (2) wetland identity (14% of variation) and (3) surface soil salinity and moisture (2% of variation). Increasing the spatial scale of analysis changed the variables that best predicted patterns of species densities. Timing of germination depended on surface soil salinity and, to a lesser extent, soil moisture. Germination occurred after salinity had dropped below a threshold or, in some cases, after moisture had increased above a critical level. Between 32% and 92% of the seedlings were exotic and most of these occurred at lower soil salinity than native species. However, Parapholis incurva and Mesembryanthemum nodiflorum were found in the same environments as the native species. In 1997, the year of a strong El Niño/Southern Oscillation event with high rainfall and sea levels, the elevation distribution of species narrowed and densities of P. incurva and other exotic species decreased but densities of native and rare species did not change. The ‘regeneration niche’ of wetland plant communities includes the effects of multiple abiotic and biotic factors on both the spatial and temporal variations in plant establishment.  相似文献   
6.
Water scarcity is a widespread problem in many parts of the world. Most previous methods of water scarcity assessment only considered water quantity, and ignored water quality. In addition, the environmental flow requirement (EFR) was commonly not explicitly considered in the assessment. In this study, we developed an approach to assess water scarcity by considering both water quantity and quality, while at the same time explicitly considering EFR. We applied this quantity–quality-EFR (QQE) approach for the Huangqihai River Basin in Inner Mongolia, China. We found that to keep the river ecosystem health at a “good” level (i.e., suitable for swimming, fishing, and aquaculture), 26% of the total blue water resources should be allocated to meet the EFR. When such a “good” level is maintained, the quantity- and quality-based water scarcity indicators were 1.3 and 14.2, respectively; both were above the threshold of 1.0. The QQE water scarcity indicator thus can be expressed as 1.3(26%)|14.2, indicating that the basin was suffering from scarcity problems related to both water quantity and water quality for a given rate of EFR. The current water consumption has resulted in degradation of the basin's river ecosystems, and the EFR cannot be met in 3 months of a year. To reverse this situation, future policies should aim to reduce water use and pollution discharge, meet the EFR for maintaining healthy river ecosystems, and substantially improve pollution treatment.  相似文献   
7.
Abstract. Soil resource availability may affect plant regeneration by resprouting in disturbed environments directly, by affecting plant growth rates, or indirectly by determining allocation to storage in the resprouting organs. Allocation to storage may be higher in stressful, low resource‐supply soils, but under such conditions plant growth rates may be lower. These factors could act in opposite directions leading to poorly known effects on resprouting. This paper analyses the role played by soil resources in the production and growth of resprouts after removal of above‐ground plant tissues in the Mediterranean shrub Erica australis. At 13 sites, differing in substrate, we cut the base of the stems of six plants of E. australis and allowed them to resprout and grow for two years. Soils were chemically analysed and plant water potential measured during the summer at all sites to characterize soil resource availability. We used stepwise regression analysis to determine the relationships between the resprouting response [mean site values of the number of resprouts (RN), maximum length (RML) and biomass (RB)] and soil nutrient content and plant water potential at each site. During the first two years of resprouting there were statistically significant differences among sites in the variables characterizing the resprouting response. RML was always different among sites and had little relationship with lignotuber area. RN was less different among sites and was always positively correlated with lignotuber area. RB was different among sites after the two years of growth. During the first months of resprouting, RN and RML were highly and positively related to the water status of the plant during summer. At later dates soil fertility variables came into play, explaining significant amounts of variance of the resprouting variables. Soil extractable cations content was the main variable accounting for RML and RB. Our results indicate that resprout growth of E. australis is positively affected by high water availability at the beginning of the resprouting response and negatively so by high soil extractable cation content at later periods. Some of these factors had previously shown to be related, with an opposite sign, to the development of a relatively larger lignotuber. Indeed, RML and RB measured in the second year of resprouting were significantly and negatively correlated with some indices of biomass allocation to the lignotuber at each site. This indicates that sites favouring allocation to the resprouting organ may not favour resprout growth.  相似文献   
8.
Eutrophication resulting from nutrient enrichment decreases water quality and harms ecosystem structure and function, and its degree is significantly affected by land use in the catchment. Quantifying the relationship between eutrophication and land use can help effectively manage land use to improve water quality. Previous studies principally utilized land use quantity as an indicator to link water quality parameters, but these studies lacked insight into the impact of land use intensity. Taking the upper catchment of Miyun Reservoir as a case study, we developed a method of aggregating land use quantity and intensity to build a new land use indicator and tested its explanatory power on water quality. Six nutrient concentrations from 52 sub-watersheds covering the whole catchment were used to characterize the spatial distribution of eutrophication. Based on spatial techniques, empirical conversion coefficients, remote sensing data, and socio-economic statistical data, land use intensity was measured and mapped visually. The new land use indicator was calculated and linked to nutrient concentrations by Pearson correlation coefficients. Results demonstrated that our new indicator incorporating intensity information can quantify the different nutrient-exporting abilities of different land use areas. Compared to traditional indicators that only incorporate land use quantity, most Pearson correlation coefficients between the new indicator and water nutrient concentrations increased. This new information enhanced the explanatory power of land use on water nutrient concentrations, and so will be able to help us understand the impact of land use on water quality and guide decision making for better land use management.  相似文献   
9.
Understanding ectomycorrhizal fungal (EMF) community structure is limited by a lack of taxonomic resolution and autecological information. Rhizopogon vesiculosus and Rhizopogon vinicolor (Basidiomycota) are morphologically and genetically related species. They are dominant members of interior Douglas‐fir (Pseudotsuga menziesii var. glauca) EMF communities, but mechanisms leading to their coexistence are unknown. We investigated the microsite associations and foraging strategy of individual R. vesiculosus and R. vinicolor genets. Mycelia spatial patterns, pervasiveness and root colonization patterns of fungal genets were compared between Rhizopogon species and between xeric and mesic soil moisture regimes. Rhizopogon spp. mycelia were systematically excavated from the soil and identified using microsatellite DNA markers. Rhizopogon vesiculosus mycelia occurred at greater depth, were more spatially pervasive, and colonized more tree roots than R. vinicolor mycelia. Both species were frequently encountered in organic layers and between the interface of organic and mineral horizons. They were particularly abundant within microsites associated with soil moisture retention. The occurrence of R. vesiculosus shifted in the presence of R. vinicolor towards mineral soil horizons, where R. vinicolor was mostly absent. This suggests that competition and foraging strategy may contribute towards the vertical partitioning observed between these species. Rhizopogon vesiculosus and R. vinicolor mycelia systems occurred at greater mean depths and were more pervasive in mesic plots compared with xeric plots. The spatial continuity and number of trees colonized by genets of each species did not significantly differ between soil moisture regimes.  相似文献   
10.
The estimation of soil moisture by using the backscattering coefficient of radar in a mountainous region is a challenging task due to the complex topography, which impacts the distribution of soil moisture and changes the backscattering coefficient. Complicated terrain can disturb empirical moisture estimation models, thereby, the resulting estimates of soil moisture are very unlikely reliable. This article proposed an innovative way of integration of the topographic wetness index (TWI) and the backscattering coefficient of soil obtained from the TerraSAR-X image, which improves the accuracy of measurement of the soil moisture. The standard estimation error and the coefficient of determination from the model were used to evaluate the performance of TWI. Our results show that the standard estimation error was decreased from: (1) 4.0% to 3.3% cm3 cm−3 at a depth of 5 cm and (2) 4.5% to 3.9% cm3 cm−3 at a depth of 10 cm. The most reliable estimation was observed at a depth of 5 cm, when it was compared with those of 0–5 cm, 10 cm and 15 cm. The TWI from the digital elevation model (DEM) is useful as a constraint condition for modeling work. This article concludes that the integration of the backscattering coefficient of soil with TWI can significantly reduce the uncertainty in the estimation of soil moisture in a mountainous region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号