首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1109篇
  免费   65篇
  国内免费   198篇
  2024年   3篇
  2023年   20篇
  2022年   21篇
  2021年   26篇
  2020年   34篇
  2019年   28篇
  2018年   31篇
  2017年   36篇
  2016年   36篇
  2015年   25篇
  2014年   33篇
  2013年   63篇
  2012年   47篇
  2011年   76篇
  2010年   26篇
  2009年   59篇
  2008年   54篇
  2007年   68篇
  2006年   57篇
  2005年   52篇
  2004年   43篇
  2003年   32篇
  2002年   50篇
  2001年   33篇
  2000年   31篇
  1999年   27篇
  1998年   26篇
  1997年   34篇
  1996年   38篇
  1995年   34篇
  1994年   20篇
  1993年   23篇
  1992年   28篇
  1991年   17篇
  1990年   28篇
  1989年   20篇
  1988年   18篇
  1987年   12篇
  1986年   12篇
  1985年   10篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   6篇
  1978年   2篇
  1977年   6篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有1372条查询结果,搜索用时 15 毫秒
1.
Summary The influence of total nitrification to nitrate or partial nitrification to nitrite on the soil organic nitrogen status was examined. NH 4 +15N was added to the soil in the absence and the presence of NaClO3, respectively nitrapyrin. The first chemical inhibits only nitrate formation, the second inhibits total nitrification. The accumulation of nitrite nitrogen in the soil at levels up to 5 mg kg–1 increased the loss of nitrogen. Yet, it did not increase the binding of mineral nitrogen into soil organic matter, relative to the control soil. The data suggest that the biochemistry of the nitrite formation process, rather than the levels of nitrite ions formed, are of primary importance in the role of nitrification mediated nitrosation of soil organic matter.  相似文献   
2.
Studies were conducted to compare N mineralization rates in salt-amended nonsaline soils to naturally-occurring saline soils. NaCl, CaCl2, and Na2SO4 were added to nonsaline soils at rates that produced electrical conductivities of the saturation extracts (ECe) of 5, 10, 15, and 20 dS m−1. Saline soils with similar properties were leached to the same ECc levels. N mineralization in the Chino soil was inhibited by salt addition, particularly with sodium and calcium chlorides. In the Domino soil there was some inhibition of N mineralization with the chloride salts, but enhancement with Na2SO4 was observed. Nitrification in both soils was more sensitive to salt addition than ammonification. N mineralization occurred more slowly in both leached saline soils compared to the salt-amended soils. Leached saline soils often accumulated greater amounts of inorganic N compared to their native saline counterparts, particularly with the 5 dS m−1 Chino soil (native, 44 dS m−1) and with the 5, 10, 15 and 20 dS m−1 Domino soils (native, 32 dS m−1). Kinetic parameters were estimated by the linear least squares (LLS) and the nonlinear least squares (NLLS) methods. Generally, the LLS transformation estimated greater values of potentially mineralizable N (No) and lower rate constants (k). With the NLLS equation, No values for the leached saline soils were usually lower, and k values usually higher than in the salt-amended soils. The nonsaline controls generally had the highest No and lowest k estimates. Average LLS rate constants for the salt-amended and leached saline soils were 0.055 and 0.083 for the Chino, and 0.104 and 0.137 week−1, respectively, for the Domino soils. With the NLLS equation, average k values for the salt-amended and leached saline soils were 0.087 and 0.089 for the Chino, and 0.181 and 0.387 week−1, respectively, for the Domino soils. These results suggest that N mineralization rates obtained in salt-amended nonsaline soils may not be representative of those in naturally-occurring saline soils.  相似文献   
3.
The N2O flux from the surface of grass-covered pots was only significant following grass maturing. Removal of the above-ground plant material resulted in an immediate and long-lasting increase in N2O production in the soil. The results suggest that easily available organic matter from the roots stimulates the denitrification when the plants are damaged. Grass cutting might therefore result in a marked nitrogen loss through denitrification. The quantitative effect was equal in soil with and without succinate added. The size of the anaerobic zone around the roots is therefore sufficient to allow for denitrification activity mediated by increased organic matter availability because of plant cutting.  相似文献   
4.
The effect of soil burning on N and P availability and on mineralization and nitrification rates of N in the burned mineral soil was studied by combustion of soils in the laboratory. At a fire temperature of 600°C, there was a complete volatilization of NH4 and a significant increase of pH, from 7.6 in the unburned soil to 11.7 in the burned soil. Under such conditions ammonification and nitrification reactions were inhibited. Less available P was produced immediately after the fire at 600°C, as compared to P amount produced at 250°C. Burning the soils with plants caused a decrease in NH4-N and (NO2+NO3)-N concentrations in the soil as well as a reduction in ammonification and nitrification rates. Combustion of soil with plants contributed additional available P to the burned soil. The existence of a non-burned soil under the burned one played an important role in triggering ammonification and nitrification reactions.  相似文献   
5.
The Méry-sur-Oise (France) storage reservoir is an artificial basin of 9 m average depth, fed by water from the river Oise with a mean residence time of about 4 days. Sediments are accumulating at a rate of about 0.7 cm/month. In the sediments, two fractions of organic nitrogen with different rates of bacterial degradation could be distinguished, one associated with fresh phytoplankton, the other made of detrital and more refractory compounds. The fluxes of oxygen, nitrate and ammonium across the sediment-water interface were measured with a bell-jar system at different seasons during a 3 year period following flooding of the basin. The measurements show clear seasonal variations in relation with the variations of temperature and input of fresh phytoplanktonic material to the sediment. In addition, a long term trend of increasing ammonium was observed. Measurements were also carried out after dredging of all accumulated sediments of the basin. They showed a considerable reduction of the flux of nitrate to the sediments and a significant reduction of the flux of ammonium to the water column.These results are interpreted in the light of a non stationary model of N diagenesis in accumulating sediments. This model is able to predict at least the general trends of benthic N cycling of basins during the early stage of their ecological succession.  相似文献   
6.
Spatial variations in soil processes regulating mineral N losses to streams were studied in a small watershed near Toronto, Ontario. Annual net N mineralization in the 0–8 cm soil was measured in adjacent upland and riparian forest stands using in situ soil incubations from April 1985 to 1987. Mean annual rates of soil N mineralization and nitrification were higher in a maple soil (93.8 and 87.0 kg.ha–1) than in a pine soil (23.3 and 8.2 kg.ha–1 ). Very low mean rates of mineralization (3.3 kg.ha–1) and nitrification (3.4 kg.ha–1) were found in a riparian hemlock stand. Average NO3-N concentrations in soil solutions were 0.3–1.0 mg.L–1 in the maple stand and >0.06mg.L–1 in the pine stand. Concentrations of NO3–N in shallow ground water and stream water were 3–4× greater in a maple subwatershed than in a pine subwatershed. Rapid N uptake by vegetation was an important mechanism reducing solution losses of NO3–N in the maple stand. Low rates of nitrification were mainly responsible for negligible NO3–N solution losses in the pine stand.  相似文献   
7.
Citrobacter freundii, Paracoccus denitrificans and Pseudomonas stutzeri were grown either singly or in mixed culture in anaerobic nitrate or nitrite limited chemostats with formate and/or succinate as electron donors and carbon sources. C. freundii reduced nitrate or nitrite stoichiometrically to ammonia. Maximum molar growth yields for nitrate (nitrite) were 15.3 (9.9) g/mol for C. freundii on formate with succinate as carbon source, 15.3 (9.5) g/mol for Ps. stutzeri on succinate and 32.3 (20.4) g/mol for Pa. denitrificans on succinate. The almost identical growth yields indicate that the ATP output of the anaerobic processes in the nitrate (nitrite) ammonifying organism and Ps. stutzeri are nearly the same. In mixed cultures with either Ps. stutzeri or Pa. denitrificans, C. freundii was the best competitor for nitrate. These results show that in anaerobic environments C. freundii may compete successfully with denitrifying organisms.  相似文献   
8.
Two isoprene (2-methyl-1,3-butadiene) utilizing bacteria, Alcaligenes denitrificans ssp. xylosoxidans JE 75 and Rhodococcus erythropolis JE 77, were identified as highly efficient cooxidizers of TCE, cis- and transdichloroethene, 1,1-dichloroethene and vinylchloride. Isoprene grown cells eliminate chloride from TCE in stoichiometric amounts and tolerate high concentrations of TCE.  相似文献   
9.
Water culture, growth chamber, greenhouse and field experiments were conducted to compare the effect of NH4−N and NO3−N on yield and N uptake of rapeseed (Brassica campestris L.). In water culture, the yields of 28-day old rapeseed plants grown at 14 μg N ml−1 were double with NO3 compared to NH4, but N uptake was little affected. There was no such effect when concentration was reduced to 3.5 or 7 μg N ml−1. The yield and N uptake of 26-day old rapeseed grown on six soils (pH 4.6 to 6.5) in pots in a growth chamber were much greater with NO3 than with NH4, although N concentration was more in the NH4- than the NO3-grown plants. In a greenhouse experiment with rapeseed grown on 12 potted soils, the N uptake of applied N was greater with NO3 than with NH4 on all soils. Averages were 63% with NH4 and 78% with NO3. However, NH4-fixation capacities of the soils were only weakly correlated with yield from the two sources of N (r=0.48) and the relation was similar with N uptake. In contrast to the behavior of water culture, growth chamber and greenhouse experiments, the 33 field experiments did not show consistent difference in seed yield with NH4 and NO3 applied at time of seeding. In nine field experiments where band application was used for Ca(NO3)2, (NH4)2 SO4, NH4 NO3, yield tended to be greatest for (NH4)2SO4. However, in 19 experiments on acid soils with and without lime, yields in most cases were similar with (NH4)2SO4 and NH4 NO3. Nitrification inhibitors were added to spring banded NH4-based fertilizers in five experiments, but the yields were not influenced. Scientific Paper No. 558, Lacombe Research Station, Agriculture Canada.  相似文献   
10.
Laboratory incubation and field experiments were conducted to evaluate thiourea, ATC (4-amino-1, 2, 4 triazole hydrochloride) and N-Serve 24 E (2-chloro-6-trichloromethyl-pyridine) as inhibitors of nitrification of fertilizer N. In the incubation experiment, most of the added aqueous NH3 or urea was nitrified at 14 days on both soils, but addition of the inhibitors to fertilizer N decreased the conversion of NH4−N to NO3−N markedly. There was less nitrification for ATC and thiourea but not for N-Serve 24 E when the fertilizers and the inhibitors were placed at a point as opposed to when mixed into soil. After 28 days, ATC and N-Serve 24 E were more effective in inhibiting nitrification than thiourea. ATC and N-Serve 24 E also inhibited release of mineral N (NH4−N+NO3−N) from native soil N. In the uncropped field experiment, which received N fertilizers in the fall, nitrification of fall-applied N placed in the 15-cm bands was almost complete by early May in the Malmo soil, but not in the Breton soil. When ATC or thiourea had been applied with urea, nitrification of fall-applied N was depressed by May and the recovery of applied N as NH4−N was greater with increasing band spacing to 60 cm or placing N fertilizer in nests (a method of application where urea prills were placed at a point in the soil in the center of 60×60 cm area). In late June, the percentage recovery of fall-applied N in soil as NH4−N or mineral N increased with wide band spacing, or nest placement, or by adding ATC to fertilizer N on both soils. These results indicate that placing ammonium-based N fertilizers in widely-spaced bands or in nests with low rates of inhibitors slows nitrification enough to prevent much of the losses from fall-applied N. Scientific Paper No. 552, Lacombe Research Station, Research Branch, Agric, Can.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号