首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   6篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   7篇
  2006年   2篇
  2002年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
A DNA sequence encoding a protein with predicted EF-hand and dynein light chain binding domains was identified in a Fasciola hepatica EST library. Sequence analysis of the encoded protein revealed that the most similar known protein was the Fasciola gigantica protein FgCaBP3 and so this newly identified protein was named FhCaBP3. Molecular modelling of FhCaBP3 predicted a highly flexible N-terminal region, followed by a domain containing two EF-hand motifs the second of which is likely to be a functioning divalent ion binding site. The C-terminal domain of the protein contains a dynein light chain like region. Interestingly, molecular modelling predicts that calcium ion binding to the N-terminal domain destabilises the β-sheet structure of the C-terminal domain. FhCaBP3 can be expressed in, and purified from, Escherichia coli. The recombinant protein dimerises and the absence of calcium ions appeared to promote dimerisation. Native gel shift assays demonstrated that the protein bound to calcium and manganese ions, but not to magnesium, barium, zinc, strontium, nickel, copper or cadmium ions. FhCaBP3 interacted with the calmodulin antagonists trifluoperazine, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and chlorpromazine as well as the myosin regulatory light chain-binding drug praziquantel. Despite sequence and structural similarities to other members of the same protein family from F. hepatica, FhCaBP3 has different biochemical properties to the other well characterised family members, FH22 and FhCaBP4. This suggests that each member of this trematode calcium-binding family has discrete functional roles within the organism.  相似文献   
2.
3.
4.
A goal in recombinant protein production using Chinese hamster ovary (CHO) cells is to achieve both high specific productivity and high cell density. Addition of glucose to the culture media is necessary to maintain both cell growth and viability. We varied the glucose concentration in the media from 5 to 16 g/L and found that although specific productivity of CHO‐DG44 cells increased with the glucose level, the integrated viable cell density decreased. To examine the biological basis of these results, we conducted a discovery proteomic study of CHO‐DG44 cells grown under batch conditions in normal (5 g/L) or high (15 g/L) glucose over 3, 6, and 9 days. Approximately 5,000 proteins were confidently identified against an mRNA‐based CHO‐DG44 specific proteome database, with 2,800 proteins quantified with at least two peptides. A self‐organizing map algorithm was used to deconvolute temporal expression profiles of quantitated proteins. Functional analysis of altered proteins suggested that differences in growth between the two glucose levels resulted from changes in crosstalk between glucose metabolism, recombinant protein expression, and cell death, providing an overall picture of the responses to high glucose environment. The high glucose environment may enhance recombinant dihydrofolate reductase in CHO cells by up‐regulating NCK1 and down‐regulating PRKRA, and may lower integrated viable cell density by activating mitochondrial‐ and endoplasmic reticulum‐mediated cell death pathways by up‐regulating HtrA2 and calpains. These proteins are suggested as potential targets for bioengineering to enhance recombinant protein production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1026–1038, 2015  相似文献   
5.
DLC1是1998年在对原发性肝癌进行研究时首次分离和报道的,它不仅在肝癌中表达缺失,而且在人类多种恶性肿瘤中也表达低下或缺失,是近年来研究较热门的肿瘤抑制基因。乳腺癌是女性常见的恶性肿瘤,极大影响女性身心健康,在乳腺癌等恶性肿瘤中,DLC1具有抑制癌细胞增殖、迁移并诱导凋亡的作用。  相似文献   
6.
The protein deleted in liver cancer 1 (DLC1) interacts with the tensin family of focal adhesion proteins to play a role as a tumor suppressor in a wide spectrum of human cancers. This interaction has been proven to be crucial to the oncogenic inhibitory capacity and focal adhesion localization of DLC1. The phosphotyrosine binding (PTB) domain of tensin2 predominantly interacts with a novel site on DLC1, not the canonical NPXY motif. In this study, we characterized this interaction biochemically and determined the complex structure of tensin2 PTB domain with DLC1 peptide by NMR spectroscopy. Our HADDOCK-derived complex structure model elucidates the molecular mechanism by which tensin2 PTB domain recognizes DLC1 peptide and reveals a PTB-peptide binding mode that is unique in that peptide occupies the binding site opposite to the canonical NPXY motif interaction site with the peptide utilizing a non-canonical binding motif to bind in an extended conformation and that the N-terminal helix, which is unique to some Shc- and Dab-like PTB domains, is required for binding. Mutations of crucial residues defined for the PTB-DLC1 interaction affected the co-localization of DLC1 and tensin2 in cells and abolished DLC1-mediated growth suppression of hepatocellular carcinoma cells. This tensin2 PTB-DLC1 peptide complex with a novel binding mode extends the versatile binding repertoire of the PTB domains in mediating diverse cellular signaling pathways as well as provides a molecular and structural basis for better understanding the tumor-suppressive activity of DLC1 and tensin2.  相似文献   
7.
A range of titanium doped diamond-like carbon (Ti-DLC) coatings with different Ti contents were prepared on stainless steel substrates using a plasma-enhanced chemical vapour deposition technique. It was found that both the electron donor surface energy and the surface roughness of the Ti-DLC coatings increased with increasing Ti contents in the coatings. Bacterial adhesion to the coatings was evaluated against Escherichia coli WT F1693 and Pseudomonas aeruginosa ATCC 33347. The experimental data showed that bacterial adhesion decreased with the increases of the Ti content, the electron donor surface energy and surface roughness of the coatings, while the bacterial removal percentage increased with the increases of these parameters. The Ti-DLC coatings reduced bacterial attachment by up to 75% and increased bacterial detachment from 15 to 45%, compared with stainless steel control.  相似文献   
8.
TAT-RasGAP317–326, a cell-permeable 10-amino acid-long peptide derived from the N2 fragment of p120 Ras GTPase-activating protein (RasGAP), sensitizes tumor cells to apoptosis induced by various anticancer therapies. This RasGAP-derived peptide, by targeting the deleted in liver cancer-1 (DLC1) tumor suppressor, also hampers cell migration and invasion by promoting cell adherence and by inhibiting cell movement. Here, we systematically investigated the role of each amino acid within the RasGAP317–326 sequence for the anticancer activities of TAT-RasGAP317–326. We report here that the first three amino acids of this sequence, tryptophan, methionine, and tryptophan (WMW), are necessary and sufficient to sensitize cancer cells to cisplatin-induced apoptosis and to reduce cell migration. The WMW motif was found to be critical for the binding of fragment N2 to DLC1. These results define the interaction mode between the active anticancer sequence of RasGAP and DLC1. This knowledge will facilitate the design of small molecules bearing the tumor-sensitizing and antimetastatic activities of TAT-RasGAP317–326.  相似文献   
9.
10.
Diabetes is a metabolic disorder affecting more than 400 million individuals and their families worldwide. The major forms of diabetes (types 1 and 2) are characterized by pancreatic β-cell dysfunction and, in some cases, loss of β-cell mass causing hyperglycemia due to absolute or relative insulin deficiency. The BCL-2 homology 3 (BH3)-only protein BIM has a wide role in apoptosis induction in cells. In this review, we describe the apoptotic mechanisms mediated by BIM activation in β cells in obesity and both forms of diabetes. We focus on molecular pathways triggered by inflammation, saturated fats, and high levels of glucose. Besides its role in cell death, BIM has been implicated in the regulation of mitochondrial oxidative phosphorylation and cellular metabolism in hepatocytes. BIM is both a key mediator of pancreatic β-cell death and hepatic insulin resistance and is thus a potential therapeutic target for novel anti-diabetogenic drugs. We consider the implications and challenges of targeting BIM in the treatment of the disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号