首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   620篇
  免费   11篇
  国内免费   1篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   8篇
  2019年   4篇
  2018年   5篇
  2017年   6篇
  2015年   4篇
  2014年   25篇
  2013年   26篇
  2012年   12篇
  2011年   26篇
  2010年   12篇
  2009年   27篇
  2008年   35篇
  2007年   23篇
  2006年   22篇
  2005年   26篇
  2004年   28篇
  2003年   29篇
  2002年   12篇
  2001年   12篇
  2000年   12篇
  1999年   11篇
  1998年   10篇
  1997年   10篇
  1996年   12篇
  1995年   14篇
  1994年   16篇
  1993年   14篇
  1992年   15篇
  1991年   16篇
  1990年   14篇
  1989年   10篇
  1988年   5篇
  1987年   8篇
  1986年   14篇
  1985年   14篇
  1983年   4篇
  1982年   9篇
  1981年   12篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1977年   6篇
  1976年   5篇
  1974年   4篇
  1973年   6篇
  1972年   8篇
  1971年   10篇
排序方式: 共有632条查询结果,搜索用时 15 毫秒
1.
2.
Summary The sensory receptor responsive to pressure applied internally to the ventral abdominal body wall of the blood-feeding insects, Rhodnius prolixus, is a single sense cell containing, at its distal end, a cilium enclosed within a scolopale, a densely staining structure characteristic of insect scolopidial sensilla. A small spherical structure lies within a dilation near the midregion of the cilium, and contains nine heavily staining bodies, the position of each corresponding to a pair of microtubules in the cilium. Proximal to the dilation, the microtubules are organized in a ring of nine pairs with one microtubule of each pair associated with dyneinlike arms. Dastal to the dilation a central pair of microtubules is present, but dyneinlike arms are absent. The scolopale cell, which gives risc to the scolopale, has cytoplasmic invaginations that form an elaborate array of extracellular compartments surrounding the body wall of the sense cell. These compartments may serve to dampen high frequency vibrations permitting the receptor to respond to pressure exerted by touch, an attribute in keeping with the receptor's proposed function of detecting abdominal distension related to the size and movement of the stomach.  相似文献   
3.
Summary By combined enzymatic and mechanical treatment, it was possible to dissociate the sensory epithelium of developing antennae of male Antheraea polyphemus and A. pernyi silkmoths from the stage of separation of the antennal branches up to the early stages of cuticle deposition. Large numbers of entire developing trichoid sensilla were isolated. These are characterized by a large trichogen cell with a long apical, hair-forming process and a large nucleus. A cluster of 2–3 sensory neurons, enclosed by the thecogen cell, is situated in the basal region. The dendrites run past the nucleus of the trichogen cell into the apical process from which they protrude laterally. The nuclei of the tormogen and a 4th enveloping cell can be distinguished near the base of the prospective hair. After further dissociation, only the neuron clusters remain, still enclosed by their thecogen cell and often attached to the antennal branch nerve via their axons. It is finally possible to disrupt the thecogen cells and the axons, leaving the sensory neurons with inner dendritic segments and axon stumps. The majority of these neurons can be expected to be olfactory.  相似文献   
4.
Summary The presence and distribution of galanin-immunoreactivity was examined in the uterine cervix and paracervical autonomic ganglia of the female rat. Some animals were treated with capsaicin to determine if galanin-immunoreactivity was present in small-diameter primary afferent nerves. Other animals were treated with the noradrenergic neurotoxin 6-hydroxydopamine to ascertain if galanin-immunoreactivity was present in sympathetic noradrenergic nerves. Galanin-immunoreactive nerve fibers were sparse in the cervical myometrium and vasculature, but numerous in the paracervical ganglion where they appeared to innervate principal neurons. Immunoreactivity was also present in dorsal root ganglia, dorsal horn of spinal cord, and inferior mesenteric ganglia. Capsaicin treatment resulted in a marked reduction of galanin-immunoreactivity in the spinal cord dorsal horn, but not in the dorsal root ganglia, paracervical ganglia, or cervix (although there was a substantial reduction of substance P-, neurokinin A-, and calcitonin gene-related peptide-immunoreactivity in the dorsal horn, dorsal root ganglia, and uterine cervix). 6-Hydroxydopamine treatment did not cause any appreciable change in the galanin-immunoreactivity in any tissues. We conclude that galanin-like immunoreactivity is expressed in nerve fibers innervating the paracervical ganglia and uterine cervix of the female rat. This immunoreactivity is probably present in afferent nerves and could play a role in neuroendocrine reflexes and in reproductive function.  相似文献   
5.
Summary The arista, a characteristic appendage of dipteran antennae, consists of 2 short segments at the base and a long distal shaft. A small sensory ganglion, from which arises the aristal nerve, is located proximally in the shaft. The fine structure of the aristal sensory organ was studied in detail in the fruitfly (Drosophila) and for comparison in the housefly (Musca) and the blowfly (Calliphora). In Drosophila, the aristal sense organ consists of 3 identical sensilla that terminate in the hemolymph space of the aristal shaft, and not in an external cuticular apparatus. Each sensillum comprises 2 bipolar neurons and 2 sheath cells; a third sheath cell envelops the somata of all six neurons of the ganglion. The neurons have long slender dendrites with the usual subdivision into an inner and an outer segment. One of the outer segments is highly lamellated and bears small particles (BOSS-structures) on the outside of its cell membrane; the other outer segment is unbranched and has a small diameter. The fine structure of the first dendrite is strongly reminiscent of thermoreceptors known from the antennae of other insects. These thermoreceptors are often coupled with hygroreceptors; however, we can only speculate whether the second dendrite of the aristal organ also has this function. Our present results argue against mechanoreceptive functions, as formerly postulated. The aristal sense organs in Musca and Calliphora are similar to those in Drosophila, but contain more sensilla (12 in Musca, 18 in Calliphora).  相似文献   
6.
Summary The development of the sensory neurons of the legs of the blowfly,Phormia regina has been described from the third instar larva to the late pupa using immunohistochemical staining. The leg discs of the third instar larva contain 8 neurons of which 5 come to lie in the fifth tarsomere of the developing leg. Whereas 2 neurons persist at least to the late pupa, the other cells degenerate. The first neurons of gustatory sensilla arise in the fifth tarsomere at about 1.5 h after formation of the puparium. Most of these sensilla, however, appear within a short time period beginning at about 18 h. The femoral chordotonal sensory neurons first appear at the time of formation of the puparium, as a mass of cells situated in the distal femur. During later pupal development 2 groups of these cells come to lie at the femur-trochanter border, where they become the proximal femoral chordotonal organ of the adult; the remaining cells become the distal femoral chordotonal organ. Other scolopidial neurons appear later in development. The nerve pathways of the late pupal leg are established either by the axons of the cells that are present in the larval leg disc or by new outgrowing processes of sensory neurons. In the tibia, the initial direction of new outgrowth differs in different regions of the segment: proximal tibial neurons grow distally, while distal tibial neurons grow initially proximally.  相似文献   
7.
Summary The postembryonic development of the morphology and anatomy of the complex tibial organ in the foreleg of the bushcricket Ephippiger ephippiger is described. All the receptor cells are present in the subgenual organ, the intermediate organ and the crista acustica in the 1st larval instar. Generally, even in the 1st instar, the arrangement of the scolopidia in the three organs resembles the adult structure. The acoustic trachea, the tympana, the tympanal covers and the acoustic spiracle develop step by step in subsequent instars. The acoustic trachea resembles the adult structure for the first time in the 4th instar, although its volume is still small. The auditory threshold curves recorded from the tympanal nerve in instars 4, 5 and 6 show the same frequency maxima as those in the adult. The overall sensitivity significantly increases after the final moult. The dimensions of structures that lie within the crista acustica and that are probably involved in stimulus transduction and in frequency tuning have been analysed. The dorsal wall of the anterior trachea, the tectorial membrane and the cap cells have similar dimensions, especially in the last three instars and in adults.  相似文献   
8.
Synopsis This study tested the hypothesis that visual contact between fish may result in enhanced rates of growth in a schooling fish. Juvenile chum salmon, Oncorhynchus keta, were held singly and reared in isolation or in visual contact with conspecifics. Fish were fed at either a low (6% body weight d–1) or high (20% body weight d–1) ration for 42d. Specific rates of weight gain were 18% greater at low ration and 38% greater at high ration for fish in visual contract with conspecifics than for those held in isolation. The results demonstrate a selective advantage of visual cues associated with schooling behavior and suggest that the efficacy of growth models for schooling fishes may be enhanced by the consideration of social interactions which may facilitate growth.  相似文献   
9.
Chemosensory dendritic membranes (olfactory cilia) contain protein kinase activity that is stimulated by cyclic AMP and more efficiently by the nonhydrolyzable GTP analog guanosine-5'-O-(3-thio)triphosphate (GTP gamma S). In control nonsensory (respiratory) cilia, the cyclic AMP-dependent protein kinase is practically GTP gamma S-insensitive. GTP gamma S activation of the olfactory enzyme appears to be mediated by a stimulatory GTP-binding protein (G-protein) and adenylate cyclase previously shown to be enriched in the sensory membranes. Protein kinase C activity cannot be detected in the chemosensory cilia preparation under the conditions tested. Incubation of olfactory cilia with [gamma-32P]ATP leads to the incorporation of [32P]phosphate into many polypeptides, four of which undergo covalent modification in a cyclic nucleotide-dependent manner. The phosphorylation of one polypeptide, pp24, is strongly and specifically enhanced by cyclic AMP at concentrations lower than 1 microM. This phosphoprotein is not present in respiratory cilia, but is seen also in membranes prepared from olfactory neuroepithelium after cilia removal. Cyclic AMP-dependent protein kinase and phosphoprotein pp24 may be candidate components of the molecular machinery that transduces odor signals.  相似文献   
10.
With the use of an antiserum generated in rabbits against synthetic human calcitonin gene-related peptide (CGRP) the distribution of CGRP-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system. A detailed stereotaxic atlas of CGRP-like neurons was prepared. CGRP-like immunoreactivity was widely distributed in the rat central nervous system. CGRP positive cell bodies were observed in the preoptic area and hypothalamus (medial preoptic, periventricular, anterior hypothalamic nuclei, perifornical area, medial forebrain bundle), premamillary nucleus, amygdala medialis, hippocampus and dentate gyrus, central gray and the ventromedial nucleus of the thalamus. In the midbrain a large cluster of cells was contained in the peripeduncular area ventral to the medial geniculate body. In the hindbrain cholinergic motor nuclei (III, IV, V, VI, VII XII) contained CGRP-immunoreactivity. Cell bodies were also observed in the ventral tegmental nucleus, the parabrachial nuclei, superior olive and nucleus ambiguus. The ventral horn cells of the spinal cord, the trigeminal and dorsal root ganglia also contained CGRP-immunoreactivity. Dense accumulations of fibers were observed in the amydala centralis, caudal portion of the caudate putamen, sensory trigeminal area, substantia gelatinosa, dorsal horn of the spinal cord (laminae I and II). Other areas containing CGRP-immunoreactive fibers are the septal area, nucleus of the stria terminalis, preoptic and hypothalamic nuclei (e.g., medial preoptic, periventricular, dorsomedial, median eminence), medial forebrain bundle, central gray, medial geniculate body, peripeduncular area, interpeduncular nucleus, cochlear nucleus, parabrachial nuclei, superior olive, nucleus tractus solitarii, and in the confines of clusters of cell bodies. Some fibers were also noted in the anterior and posterior pituitary and the sensory ganglia. As with other newly described brain neuropeptides it can only be conjectured that CGRP has a neuroregulatory action on a variety of functions throughout the brain and spinal cord.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号