首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   1篇
  国内免费   2篇
  2020年   1篇
  2017年   2篇
  2014年   1篇
  2013年   5篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2007年   3篇
  2006年   5篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
Summary Studies with Human x Human (HxH), Human x Mouse (HxM), and Mouse x Mouse (MxM) hybridomas have enabled us to define specific factors that affect hybridoma growth in a species-specific manner. Three transferrins and three lipophilic iron chelates have been tested for their ability to support hybridoma proliferation and antibody production. The results of these studies demonstrate that HxH hybridomas do not respond to bovine transferrin a+ concentrations up to 100 μg/ml and are approximately 100-fold less responsive to mouse transferrin than to human transferrin. HxM and MxM hybridomas respond equally to human or mouse transferrin but are 100-fold less sensitive to bovine transferrin. An antibody to the human transferrin receptor inhibited the growth-promoting activity of human or mouse transferrin on HxH hybridomas but was ineffective on HxM hybridomas. This semonstrated the functionality of the human transferrin receptor in HxH hybridomas and that human, mouse, and bovine transferrin were interacting through the mouse transferrin receptor in HxM hybridomas. HxH and HxM hybridomas respond similarly to three different iron chelates exhibiting 80 to 110% of the growth response to human transferrin. MxM hybridomas fail to respond to the iron chelates at similar concentrations, suggesting that the human genome present in the other hybridoma species confers a unique ability for utilizing iron when delivered in this form.  相似文献   
2.
The role of phytochelates in plant growth and productivity   总被引:1,自引:0,他引:1  
Plants require minimal amounts of certain metals (Zn,Fe,Cu,etc) for optimal growth and productivity, but excess of these metals leads to cell death. When growth is limited by metal excess or metal deficiency plants respond by synthesizing nonproteinogenic chelating substances. Phytosiderophores are secreted by roots of iron deficient grasses and are important in providing sufficient Fe for normal growth. In response to growth-inhibitory levels of heavy metals plants synthesize metal-binding phytochelatins which detoxify excess metals. Biostimulants such as humic substances and oligomers of lactic acid have properties in common with both phytosiderophores and phytochelatins. The word phytochelates is proposed as a generic term to cover substances that affect plant growth by acting as chelating agents.  相似文献   
3.
Neutrophil influx into tissues occurs in many diverse diseases and can be associated with both beneficial and injurious effects. We hypothesize that the stimulus for certain neutrophilic inflammatory responses can be reduced to a series of competing reactions for iron, with either a labile or reactive coordination site available, between host chelators and chelators not indigenous to that specific living system. The iron focuses the transport of host phagocytic cells through a metal catalyzed generation of oxidant sensitive mediators including cytokines and eicosanoids. Many of these products are chemotactic for neutrophils. We also postulate that the iron increases the activity of the phagocyte associated NADPH oxidoreductase in the neutrophil. The function of this enzyme is likely to be the generation of superoxide in the hostÕs attempt to chemically reduce and dislodge the iron from its chelate complex. After the reoxidation of Fe in an aerobic environment, Fe will be coordinated by host lactoferrin released by the neutrophil. When complexed by this glycoprotein, the metal does not readily undergo oxidation/reduction and is safely transported to the macrophages of the reticuloendothelial system where it is stored in ferritin. Finally, we propose that the neutrophil will attempt to destroy the chelator not indigenous to the host by releasing granular contents other than lactoferrin. Inability to eliminate the chelator allows this sequence to repeat itself, which can lead to tissue injury. Such persistence of a metal chelate in the host may be associated with biomineralization, fibrosis, and cancer.  相似文献   
4.
Dissection of the genetic basis of wheat ionome is crucial for understanding the physiological and biochemical processes underlying mineral accumulation in seeds, as well as for efficient crop breeding. Most of the elements essential for plants are metals stored in seeds as chelate complexes with phytic acid or sulfur‐containing compounds. We assume that the involvement of phosphorus and sulfur in metal chelation is the reason for strong phenotypic correlations within ionome. Adjustment of element concentrations for the effect of variation in phosphorus and sulfur seed content resulted in drastic change of phenotypic correlations between the elements. The genetic architecture of wheat grain ionome was characterized by quantitative trait loci (QTL) analysis using a cross between durum and wild emmer wheat. QTL analysis of the adjusted traits and two‐trait analysis of the initial traits paired with either P or S considerably improved QTL detection power and accuracy, resulting in the identification of 105 QTLs and 617 QTL effects for 11 elements. Candidate gene search revealed some potential functional associations between QTLs and corresponding genes within their intervals. Thus, we have shown that accounting for variation in P and S is crucial for understanding of the physiological and genetic regulation of mineral composition of wheat grain ionome and can be implemented for other plants.  相似文献   
5.
The modulation of biological signal transduction pathways by masking phosphorylated amino acid residues represents a viable route toward pharmacologic protein regulation. Binding of phosphorylated amino acid residues has been achieved with synthetic metal‐chelate receptors. The affinity and selectivity of such receptors can be enhanced if combined with a second binding site. We demonstrate this principle with a series of synthetic ditopic metal‐chelate receptors, which were synthesized and investigated for their binding affinity to phosphorylated short peptides under conditions of physiological pH. The compounds showing highest affinity were subsequently used to inhibit the interaction of the human STAT1 protein to a peptide derived from the interferon‐γ receptor, and between the checkpoint kinase Chk2 and its preferred binding motif. Two of the investigated ditopic synthetic receptors show a significant increase in inhibition activity. The results show that regulation of protein function by binding to phosphorylated amino acids is possible. The introduction of additional binding sites into the synthetic receptors increases their affinity, but the flexibility of the structures investigated so far prohibited stringent amino acid sequence selectivity in peptide binding. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
6.
Rate and equilibrium constants at 25 °C, pH ∼ 1, and ionic strength 0.10 for hydrolysis of the two non-equivalent chlorides of dichloro[S-methyl-l-cysteine(N,S)]platinum(II) isomers, denoted [PtCl2(SmecysH)], and the resultant chloro-aqua species have been determined by NMR, potentiometric, and spectrophotometric methods. Though hydrolysis constants, Kh, for the two chlorides are similar (pKh = 4-5), the rate of hydrolysis of the chloride trans to coordinated S, kh = 3.4 × 10−3 s−1, is 2-3 orders of magnitude faster than the kh for the other chloride, 2.3 × 10−6 s−1, and for the cancer drug cisplatin, cis-[PtCl2(NH3)2], 5.2 × 10−5 s−1. Relative rates of hydrolysis determined under three different experimental conditions (pH ∼ 1 in 0.10 M HNO3, high pH in 0.10 M NaOH, and at low pH with Ag+ assistance) are consistent: the Cl trans to S is 100-1000 times more labile than the Cl cis to S. Potentiometric and NMR methods were also used to estimate pKa values of all aqua species, which are comparable to values reported for corresponding aqua species derived from cisplatin.  相似文献   
7.
A series of tridentate ligands consisting of mixed aromatic and aliphatic amine derivatives of single amino acid chelates and phenylpiperazine have been developed, and their reactions with [NEt4]2[ReBr3(CO)3] have been investigated. The compounds [Re(CO)3{(NC5H4CH2)NCH3(C2H4)NHCH3}]Br (4), [Re(CO)3{(NC5H4CH2)NCH3(C2H4)NCH3(CH2)xCOOC2H5}]Br (x = 1, 5; x = 4, 6) [Re(CO)3{(NC5H4CH2)NH(C2H4)N(CH3)2}]Br (7), [Re(CO)3{(NC5H4CH2)N(CH 2COOC2H5)(C2H4)N(CH3)2}]Br (8) and [Re(CO)3(NC5H4CH2)(C2H4NH2)N(CH2)3-CH3Ophenpip]Br (9) (phenpip: phenylpiperazine, -C6H4-(CH2CH2)2N-) were prepared and characterized by elemental analysis, NMR, IR, HSMS and X-ray crystallography. All complexes exhibit fac-{Re(CO)3N3} coordination geometry in the cationic molecular unit. Crystal data for C13H17BrN3O3Re (4): orthorhombic, Pbca, a = 13.4510(8) Å, b = 10.5728(6) Å, c = 22.5378(13) Å, V = 3205.2(3) Å3, Z = 8; C17H23BrN3O5Re (5): orthorhombic, Pcca, a = 16.5907(7) Å,b = 14.8387(6) Å, c = 16.7075(7) Å, V = 4113.1(3) Å3, Z = 8; C13H25BrN3O7Re (7 · 4H2O): monoclinic, P21/n, a = 14.0698(17) Å, b = 9.6760(12) Å, c = 15.6099 (19) Å, β = 114.930(2)°, V = 1927.1(4) Å3, Z = 4; C17H23BrN3O5Re (8): monoclinic, P21/n, a = 7.5312(5) Å, b = 16.0366(10) Å, c = 16.8741(10) Å, β = 98.9990(10)°, V = 2012.9(2) Å3, Z = 4.  相似文献   
8.
A series of bifunctional chelates of the type dipicolylamino-alkylcarboxylate (NC5H4CH2)2N(CH2)nCO2H (n = 1-4; HL1-HL4, respectively) has been prepared. Reactions of the ligands in aqueous methanol/N,N-dimethylformamide with the appropriate Cu(II) salts yielded the compounds [CuL1](NO3)·H2O (1·H2O), [CuL2(H2O)]BF4·H2O (2·H2O), [Cu(HL3)(SO4)]2 (3) and [CuL4(NO3)]·MeOH (4·MeOH). While compounds 1, 2 and 4 are one-dimensional, the detailed connectivities within the chains are quite distinct, depending on factors such as alkyl chain length and ligation of aqua ligands or anionic components. In contrast to 1, 2 and 4, the structure of 3 is molecular, a binuclear assembly of edge-sharing Cu(II) ‘4+2’ distorted octahedra. The Cd(II) species, [{CdL2}2(SO4)]·4H2O (5·4H2O), prepared from HL2 and CdSO4·nH2O in aqueous methanol/N,N-dimethylformamide, is two-dimensional, with a network constructed from binuclear units of seven coordinate Cd(II), , linked through bridging SO42− groups to produce an assembly of linked hexagonal rings [{CdL2}2(SO4)]6.  相似文献   
9.
Bioavailability is integral in mediating the delicate balance between nutritive and potentially toxic levels of copper in fish diets. Brush-border membrane vesicles isolated from freshwater rainbow trout intestine were used to characterise apical copper absorption, and to examine the influence of the amino acid histidine on this process. In the absence of histidine, a low affinity, high capacity copper uptake mechanism was described. However, when expressed as a function of ionic copper (Cu2+), absorption was linear, rather than saturable, suggesting that the saturable curve was an artifact of copper speciation. Conversely, in the presence of l-histidine (780 μM) saturable uptake was characterised. The uptake capacity discerned (J max of 354 ± 81 nmol mg protein−1 min−1) in the presence of histidine indicated a significantly reduced capacity for copper transport than that in the absence of histidine. To determine if copper uptake was achievable through putative histidine uptake pathways, copper and histidine were incubated in the presence of tenfold greater concentrations of amino acids proposed to block histidine transporters. Accounting for changes in copper speciation, significant inhibition of uptake by glycine and lysine were noted at copper levels of 699 and 1,028 μM. These results suggest that copper–histidine complexes may be transportable via specific amino acid-transporters in the brush-border membrane.  相似文献   
10.
Complexation of bilirubin (BR) and biliverdin (BV) with biogenic and toxic metals (Mn, Cu, Cd, Co, Fe, Ni, Zn, and Ag) has been studied by means of electronic circular dichroism (ECD) and vibrational circular dichroism (VCD). Poly-l-lysine and β-cyclodextrin in water were chosen as matrices capable of recognizing the single stereoconformer of the pigments with defined M-helicity. Such systems allow structural changes caused by complexation of pigments with metals in aqueous solution at pH 10-11 to be followed using chiroptical methods, which are intrinsically sensitive to spatial structure. These and other spectroscopic techniques have revealed that BV and BR form monomeric complexes with Cd, Cu, and Zn and dimeric complexes with Mn. The stabilities of the complexes with Fe, Ni, Co, and Ag are remarkably lower. The sign of the ECD and VCD patterns of the complexed BV does not change for the chelates of any of the studied metals other than Zn, this exception being interpreted in terms of manifestation of the opposite helicity of BV in its chelate with Zn. In the case of BR, the observed inversion of ECD signal after complexation, together with the analysis of VCD spectra, reveals that a flattening of the molecule takes place, i.e., an increase in the angle between the pyrrinone chromophores without an inversion of helicity. This chiral stereoselectivity, which is very specific in the case of the Zn chelates, is discussed in connection with the specific inhibition of Zn-required enzymes by bile pigments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号