首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   7篇
  国内免费   1篇
  2021年   1篇
  2013年   1篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2001年   1篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1995年   3篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
The export of the maltose-binding protein (MBP), themalE gene product, to the periplasm ofEschericha coli cells has been extensively investigated. The isolation of strains synthesizing MalE-LacZ hybrid proteins led to a novel genetic selection for mutants that accumulate export-defective precursor MBP (preMBP) in the cytoplasm. The export defects were subsequently shown to result from alterations in the MBP signal peptide. Analysis of these and a variety of mutants obtained in other ways has provided considerable insight into the requirements for an optimally functional MBP signal peptide. This structure has been shown to have multiple roles in the export process, including promoting entry of preMBP into the export pathway and initiating MBP translocation across the cytoplasmic membrane. The latter has been shown to be a late event relative to synthesis and can occur entirely posttranslationally, even many minutes after the completion of synthesis. Translocation requires that the MBP polypeptide exist in an export-competent conformation that most likely represents an unfolded state that is not inhibitory to membrane transit. The signal peptide contributes to the export competence of preMBP by slowing the rate at which the attached mature moiety folds. In addition, preMBP folding is thought to be further retarded by the binding of a cytoplasmic protein, SecB, to the mature moiety of nascent preMBP. In cells lacking this antifolding factor, MBP export represents a race between delivery of newly synthesized, export-competent preMBP to the translocation machinery in the cytoplasmic membrane and folding of preMBP into an export-incompetent conformation. SecB is one of threeE. coli proteins classified as molecular chaperones by their ability to stabilize precursor proteins for membrane translocation.  相似文献   
2.
Recent years have seen the convergence of both genetic and biochemical approaches in the study of protein translocation inE. coli. The powerful combination of these approaches is exemplified in the use of anin vitro protein synthesis-protein translocaltion system to analyze the role of genetically defined components of the protein translocation machinery. We describe in this review recent results focusing on the function of thesecA, secB, andsecY gene products and the demonstration of their requirement forin vitro protein translocation. The SecA protein was recently shown to possess ATPase activity and was proposed to be a component of the translocation ATPase. We present a speculative working model whereby the translocator complex is composed of the integral membrane proteins SecY, SecD, SecE, and SecF, forming an aqueous channel in the cytoplasmic membrane, and the tightly associated peripheral membrane protein SecA functioning as the catalytic subunit of the translocator or protein-ATPase.  相似文献   
3.
The chaperone SecB, which is involved in protein export inEscherichia coli, is shown by circular dichroism measurements to contain a high content of-pleated sheets. Prediction of the secondary structure of SecB is in good agreement with the observed content of-sheet. In accordance with the previous studies in which changes in conformation were assessed indirectly [Randall (1992),Science 257, 241–245], here we show that the conformation of SecB changes with the concentration of salt in the milieu and also when SecB interacts with a peptide ligand.Abbreviations ANS 1-anilino-naphthalene-8-sulfonate - CD circular dichroism - NMR nuclear magnetic resonance - CCA convex constraint analysis  相似文献   
4.
Chaperone proteins demonstrate the paradoxical ability to bind ligands rapidly and with high affinity but with no apparent sequence specificity. To learn more about this singular property, we have mapped the binding frame of the chaperone SecB from E. coli on the oligopeptide-binding protein. Similar studies performed on the maltose-binding and galactose-binding proteins revealed centrally positioned binding frames of approximately 160 aminoacyl residues. The work described here shows that OppA, which is significantly longer than the previously studied ligands, has a binding frame that covers 460 amino acids, nearly the entire length of the protein. We propose modes of binding to account for the data.  相似文献   
5.
SecB, a molecular chaperone in Escherichia coli, binds a subset of precursor proteins that are exported across the plasma membrane via the Sec pathway. Previous studies showed that SecB bound directly to the mature region rather than to the signal sequence of the precursor protein. To determine the binding pattern of SecB and the mature region of the preprotein, here, we visualized the structure of the SecB/OmpA complex by electron microscopy. This complex is composed by two parts: the main density represents one SecB tetramer and the unfolded part of OmpA wrapping round it; the elongated smaller density represents the rest of OmpA. Each SecB protomer makes a different contribution to the binding of SecB with OmpA. The binding pattern between SecB tetramer and OmpA is asymmetric.  相似文献   
6.
The cytoplasmic step of posttranslational secretion in Escherichia coli is catalyzed by export-specific chaperone SecB and translocational ATPase SecA. In addition, the efficiency of secretion depends on the charge of the signal peptide (SP). Replacement of positively charged Lys(–20) with uncharged Ala or negatively charged Glu in the N-terminal region of SP of the alkaline phosphatase precursor (prePhoA) was shown to decrease the PhoA secretion in the periplasm. The effect on secretion increased in the absence of SecB and was especially high on SecA inactivation. A change in SP charge strengthened the SecA and SecB dependences of secretion. On evidence of immunoprecipitation, the charge of the N-terminal region of SP had no effect on prePhoA interaction with the cytoplasmic secretion factors, suggesting no direct binding between this region and SecA or SecB. Yet the charge of the N-terminal region proved to affect the functions of SP as an intramolecular chaperone and a factor of prePhoA targeting to the membrane in cooperation with SecA and SecB.  相似文献   
7.
SecB, a remarkable chaperone involved in protein export, binds diverse ligands rapidly with high affinity and low specificity. Site‐directed spin labeling and electron paramagnetic resonance spectroscopy were used to investigate the surface of interaction on the export chaperone SecB. We examined SecB in complex with the unfolded precursor form of outer membrane protein OmpA as well as with a truncated version of OmpA that includes the transmembrane domain and lacks both the signal peptide and the periplasmic domain. In addition, we studied the binding of SecB to the unfolded mature form of galactose‐binding protein, a soluble periplasmic protein. We have previously used the same strategy to map the binding surface for the precursor of galactose‐binding protein. We show that for all ligands tested the patterns of contact are the same.  相似文献   
8.
分子伴侣SecB基因和人淋巴毒素基因在大肠杆菌中的共表达周颖张青殷长传宋大新陈永青(复旦大学微生物学系和遗传研究所上海200433)分子伴侣(Chaperone)是细胞内催化及维持其他蛋白质正确构象的一类蛋白质分子[1,2]。研究表明,分子伴...  相似文献   
9.
Various environmental insults result in irreversible damage to proteins and protein complexes. To cope, cells have evolved dedicated protein quality control mechanisms involving molecular chaperones and proteases. Here, we provide both genetic and biochemical evidence that the Lon protease and the SecB and DnaJ/Hsp40 chaperones are involved in the quality control of presecretory proteins in Escherichia coli. We showed that mutations in the lon gene alleviate the cold-sensitive phenotype of a secB mutant. Such suppression was not observed with either clpP or clpQ protease mutants. In comparison to the respective single mutants, the double secB lon mutant strongly accumulates aggregates of SecB substrates at physiological temperatures, suggesting that the chaperone and the protease share substrates. These observations were extended in vitro by showing that the main substrates identified in secB lon aggregates, namely proOmpF and proOmpC, are highly sensitive to specific degradation by Lon. In contrast, both substrates are significantly protected from Lon degradation by SecB. Interestingly, the chaperone DnaJ by itself protects substrates better from Lon degradation than SecB or the complete DnaK/DnaJ/GrpE chaperone machinery. In agreement with this finding, a DnaJ mutant protein that does not functionally interact in vivo with DnaK efficiently suppresses the SecB cold-sensitive phenotype, highlighting the role of DnaJ in assisting presecretory proteins. Taken together, our data suggest that when the Sec secretion pathway is compromised, a pool of presecretory proteins is transiently maintained in a translocation-competent state and, thus, protected from Lon degradation by either the SecB or DnaJ chaperones.  相似文献   
10.
In this study Mj0357 protein, a hypothetical protein from Methanococcus jannaschii which shows an 18% sequence identity with SecB from E. coli, has been identified as a functional homologue of SecB in M. jannaschii through a number of biochemical and biophysical examinations. It is composed mostly of beta-strands and exists as a homotetramer in solution. Mj0357 protein exhibits in vitro chaperone-like activity, suppressing thermal aggregation of citrate synthase and binding to partially folded maltose-binding protein. Upon binding to a peptide ligand, the protein undergoes a conformational change to expose a hydrophobic patch on the protein surface. All these physicochemical properties are highly similar to those of E. coli SecB. In addition, E. coli trigger factor (TF) has been shown here for the first time to bind E. coli SecB and Mj0357 protein with low micromolar affinities, indicating that the TF could interact directly along the SecB-dependent translocation pathway. These results indicate that the translocation pathway is conserved and functionally homologous in at least one of the archaeal organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号