首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  2021年   1篇
  2020年   1篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Two genome-shuffled Scheffersomyces stipitis strains, GS301 and GS302, exhibiting improved tolerance to hardwood spent sulphite liquor, were tested for growth and fermentation performance on three wood hydrolysates: (a) steam-pretreated enzymatically hydrolyzed poplar hydrolysate from Mascoma Canada, (b) steam pretreated poplar hydrolysate from University of British Columbia Forest Products Biotechnology Laboratory, and (c) mixed hardwoods pre-hydrolysate from FPInnovations (FPI). In the FPI hydrolysate, the wild type (WT) died off within 25 h, while GS301 and GS302 survived beyond 100 h. In fermentation tests, GS301 and GS302 completely utilized glucose and xylose in each hydrolysate and produced 0.39–1.4% (w/v) ethanol. In contrast, the WT did not utilize or poorly utilized glucose and xylose and produced non-detectable to trace amounts of ethanol. The results demonstrated cross tolerance of the mutants to inhibitors in three different wood hydrolysates and reinforced the utility of mating-based genome shuffling approach in industrial yeast strain improvement.  相似文献   
2.
Amid known microbial bioethanol producers, the yeast Scheffersomyces (Pichia) stipitis is particularly promising in terms of alcoholic fermentation of both glucose and xylose, the main constituents of lignocellulosic biomass hydrolysates. However, the ethanol yield and productivity, especially from xylose, are still insufficient to meet the requirements of a feasible industrial technology; therefore, the construction of more efficient S. stipitis ethanol producers is of great significance. The aim of this study was to isolate the insertional mutants of S. stipitis with altered ethanol production from glucose and xylose and to identify the disrupted gene(s). Mutants obtained by random insertional mutagenesis were screened for their growth abilities on solid media with different sugars and for resistance to 3-bromopyruvate. Of more than 1,300 screened mutants, 17 were identified to have significantly changed ethanol yields during the fermentation. In one of the best fermenting strains (strain 4.6), insertion was found to occur within the ORF of a homolog to the Saccharomyces cerevisiae gene HEM25 (YDL119C), encoding a mitochondrial glycine transporter required for heme synthesis. The role of HEM25 in heme accumulation, respiration, and alcoholic fermentation in the yeast S. stipitis was studied using strain 4.6, the complementation strain Comp—a derivative from the 4.6 strain with expression of the WT HEM25 allele and the deletion strain hem25Δ. As hem25Δ produced lower amounts of ethanol than strain 4.6, we assume that the phenotype of strain 4.6 may be caused not only by HEM25 disruption but additionally by some point mutation.  相似文献   
3.
Optimization of culture parameters for achieving the most efficient ethanol fermentation is challenging due to multiple variables involved. Here we presented a rationalized methodology for multi‐variables optimization through the design of experiments DoE approach. Three critical parameters, pH, temperature, and agitation speed, affecting ethanol fermentation in S. stipitis was investigated. A predictive model showed that agitation speed significantly affected ethanol synthesis. Reducing pH and temperature also improved ethanol production. The model identified the optimum culture conditions for the most efficient ethanol production with the yield and productivity of 0.46 g/g and 0.28 g/l h, respectively, which is consistent with experimental observation. The results also indicated the scalability of the model from shake flask to bioreactor. Thus, DoE is a promising tool permitting the rapid establishment of culture conditions for the most efficient ethanol fermentation in S. stipitis. The approach could be useful to reduce process development time in lignocellulosic ethanol industry. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   
4.
《Fungal biology》2020,124(7):639-647
Yeasts associated with rotting wood from four Atlantic Rain forest sites in Brazil were investigated using a culture medium based on sugarcane bagasse hydrolysate. A total of 330 yeast strains were isolated. Pichia manshurica, Candida pseudolambica, and Wickerhamomyces sp. 3 were the most frequently isolated species. Fourteen novel species were obtained in this study. All isolates were tested for their ability to ferment d-xylose and to produce xylanases. In the fermentation assays using d-xylose (30 g L−1), the main ethanol producers were Scheffersomyces stipitis (14.08 g L−1), Scheffersomyces sp. (7.94 g L−1) and Spathaspora boniae (7.16 g L−1). Sc. stipitis showed the highest ethanol yield (0.42 g g−1) and the highest productivity (0.39 g L−1h−1). The fermentation results using hemicellulosic hydrolysate showed that Sc. stipitis was the best ethanol producer, achieving a yield of 0.32 g g−1, while Sp. boniae and Scheffersomyces sp. were excellent xylitol producers. The best xylanase-producing yeasts at 50 °C belonged to the species Su. xylanicola (0.487 U mg−1) and Saitozyma podzolica (0.384 U mg−1). The results showed that rotting wood collected from the Atlantic Rainforest is a valuable source of yeasts able to grow in sugarcane bagasse hydrolysate, including species with promising biotechnological properties.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号