首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2023年   1篇
  2019年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2000年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Savannas cover 60% of the land surface in Southern Africa, with fires and herbivory playing a key role in their ecology. The Limpopo National Park (LNP) is a 10,000 km2 conservation area in southern Mozambique and key to protecting savannas in the region. Fire is an important factor in LNP's landscapes, but little is known about its role in the park's ecology. In this study, we explored the interaction between fire frequency (FF), landscape type, and vegetation. To assess the FF, we analyzed ten years of the Moderate resolution Imaging Spectroradiometer (MODIS) burned area product (2003–2013). A stratified random sampling approach was used to assess biodiversity across three dominant landscapes (Nwambia Sandveld‐NS, Lebombo North‐LN, and Shrubveld Mopane on Calcrete‐C) and two FF levels (low—twice or less; and high—3 times or more, during 10 years). Six ha were sampled in each stratum, except for the LN versus high FF in which low accessibility allowed only 3 ha sampling. FF was higher in NS and LN landscapes, where 25% and 34% of the area, respectively, burned more than three times in 10 years. The landscape type was the main determinant of grass composition and biomass. However, in the sandy NS biomass was higher under high FF. The three landscapes supported three different tree/shrub communities, but FF resulted in compositional variations in NS and LN. Fire frequency had no marked influence on woody structural parameters (height, density, and phytomass). We concluded that the savannas in LNP are mainly driven by landscape type (geology), but FF may impose specific modifications. We recommend a fire laissez‐faire management system for most of the park and a long‐term monitoring system of vegetation to address vegetation changes related to fire. Fire management should be coordinated with the neighboring Kruger National Park, given its long history of fire management. Synthesis: This study revealed that grass and tree/shrub density, biomass, and composition in LNP are determined by the landscape type, but FF determines some important modifications. We conclude that at the current levels FF is not dramatically affecting the savanna ecosystem in the LNP (Figure 1). However, an increase in FF may drive key ecosystem changes in grass biomass and tree/shrub species composition, height, phytomass, and density.  相似文献   
2.
Summary The African grass Hyparrhenia rufa has established itself successfully in South American savannas (Llanos) and displaced dominant native grasses such as Trachypogon plumosus from the wetter and more fertile habitats. Several ecophysiological traits have been related to the higher competitive capacity of H. rufa. To further analyze the behavior of both species, their growth, biomass allocation, physiological and architectural responses to defoliation and water stress were compared under controlled conditions. Although total, aerial and underground biomass decreased under defoliation in both grasses, increases in clipped-leaf biomass and area compensated for defoliation in H. rufa but not in T. plumosus. This difference was due mainly to a higher proportion of assimilates being directed to leaf and tiller production and a higher leaf growth rate in the African grass as compared to T. plumosus, which showed incrased senescence under frequent defoliation. In both species, water stress ameliorated the effects of defoliation. The ability to compensate for defoliated biomass in H. rufa is possibly related to its long coevolution with large herbivores in its original African habitat and is apparently one of the causes of its success in Neotropical savannas.  相似文献   
3.
We introduce the concept of dynamical phase coexistence to provide a simple solution for a long-standing problem in theoretical ecology, the so-called “savanna problem”. The challenge is to understand why in savanna ecosystems trees and grasses coexist in a robust way with large spatiotemporal variability. We propose a simple model, a variant of the contact process (CP), which includes two key extra features: varying external (environmental/rainfall) conditions and tree age. The system fluctuates locally between a woodland and a grassland phase, corresponding to the active and absorbing phases of the underlying pure contact process. This leads to a highly variable stable phase characterized by patches of the woodland and grassland phases coexisting dynamically. We show that the mean time to tree extinction under this model increases as a power-law of system size and can be of the order of 10,000,000 years in even moderately sized savannas. Finally, we demonstrate that while local interactions among trees may influence tree spatial distribution and the order of the transition between woodland and grassland phases, they do not affect dynamical coexistence. We expect dynamical coexistence to be relevant in other contexts in physics, biology or the social sciences.  相似文献   
4.
Plio-Pleistocene East African grassland expansion and faunal macroevolution, including that of our own lineage, are attributed to global climate change. To further understand environmental factors of early hominin evolution, we reconstruct the paleogeographic distribution of vegetation (C(3)-C(4) pathways) by stable carbon isotope (delta(13)C) analysis of pedogenic carbonates from the Plio-Pleistocene Koobi Fora region, northeast Lake Turkana Basin, Kenya. We analyzed 202 nodules (530 measurements) from ten paleontological/archaeological collecting areas spanning environments over a 50-km(2) area. We compared results across subregions in evolving fluviolacustrine depositional environments in the Koobi Fora Formation from 2.0-1.5 Ma, a stratigraphic interval that temporally brackets grassland ascendancy in East Africa. Significant differences in delta(13)C values between subregions are explained by paleogeographic controls on floral composition and distribution. Our results indicate grassland expansion between 2.0 and 1.75 Ma, coincident with major shifts in basin-wide sedimentation and hydrology. Hypotheses may be correct in linking Plio-Pleistocene hominin evolution to environmental changes from global climate; however, based on our results, we interpret complexity from proximate forces that mitigated basin evolution. An approximately 2.5 Ma tectonic event in southern Ethiopia and northern Kenya exerted strong effects on paleography in the Turkana Basin from 2.0-1.5 Ma, contributing to the shift from a closed, lacustrine basin to one dominated by open, fluvial conditions. We propose basin transformation decreased residence time for Omo River water and expanded subaerial floodplain landscapes, ultimately leading to reduced proportions of wooded floras and the establishment of habitats suitable for grassland communities.  相似文献   
5.
Savannas are the most common vegetation type in the tropics and subtropics, ranging in physiognomy from grasslands with scattered woody plants to woodlands with heterogeneous grass cover. Productivity and organic matter turnover in savannas are controlled by interactions between water and nutrient availability, and this basic environmental structure is modified by fire frequency and land management practices. We compared temperate and tropical savannas in order to understand the strength of nitrogen (N) limitation of productivity. American tropical and temperate savannas are N limited systems, and the N cycle differs according to the woody plant density, fire frequency, land use change, N deposition and N fixation. Grazing and conversion to pasture have been the predominant land-use changes in most savannas. In the Cerrado and the Llanos tropical savannas, intensified use of fire for pasture management is leading to decreased woody plant density. Oppositely, in the Chaco and North American temperate savannas, fire suppression and grazing are leading to increases in woody density. In addition, the higher soil P availability in the Gran Chaco and the higher N deposition in North American savannas may be contributing to increases of N cycling and net productivity rates. Some aspects of the N budget for savannas of the American continent are still unclear and require further analysis to determine rates of N fixation, and to understand how spatial and temporal soil heterogeneity control N fluxes through soil solution and into streams.  相似文献   
6.
Previous studies have indicated that epiphytic lichens can be good bioindicators of fire history in tropical savannas. A Lichen Fire History (LFH) Key was developed to assess fire history in areas of cerrado (savanna) in central Brazil. However, the effectiveness and reliability of the LFH Key is much influenced by other lichen determinants. The aim of this study, therefore, was to investigate some of these factors in more detail, thereby allowing better estimates of fire history using the LFH Key. Fieldwork was carried out at the Reserva Ecológica do IBGE, 33 km outside Brasilia D.F., in plots of cerrado denso of varying fire history. Vegetation sampling took place in 20 × 20 m-quadrats within which measurements of the lichen abundance, scorch and phorophyte characteristics, including height, girth and tortuosity, were recorded for all the phorophytes encountered. Bark samples were collected from common cerrado phorophytes and tested for pH, conductivity, moisture content and absorbing capacity, texture and nutrient content. The results show that the greater the impact of fire, the lower the influence of other factors, such as bark characteristics, on the lichens. The strongest determinants of lichens in areas subjected to rare fires or protected from fire are bark aluminium content, bark pH, and microclimatic factors. Using the information gathered from the study, phorophyte species are grouped in terms of their reliability for use in the LFH Key. This study highlights the range of factors which can affect lichen abundance in the tropics, and the relationships between them.  相似文献   
7.
Baruch Z  Jackson RB 《Oecologia》2005,145(4):522-532
The invasion of African grasses into Neotropical savannas has altered savanna composition, structure and function. The projected increase in atmospheric CO2 concentration has the potential to further alter the competitive relationship between native and invader grasses. The objective of this study was to quantify the responses of two populations of a widespread native C4 grass (Trachypogon plumosus) and two African C4 grass invaders (Hyparrhenia rufa and Melinis minutiflora) to high CO2 concentration interacting with two primary savanna stressors: drought and herbivory. Elevated CO2 increased the competitive potential of invader grasses in several ways. Germination and seedling size was promoted in introduced grasses. Under high CO2, the relative growth rate of young introduced grasses was twice that of native grass (0.58 g g−1 week−1 vs 0.25 g g−1 week−1). This initial growth advantage was maintained throughout the course of the study. Well-watered and unstressed African grasses also responded more to high CO2 than did the native grass (biomass increases of 21–47% compared with decreases of 13–51%). Observed higher water and nitrogen use efficiency of invader grasses may aid their establishment and competitive strength in unfertile sites, specially if the climate becomes drier. In addition, high CO2 promoted lower leaf N content more in the invader grasses. The more intensive land use, predicted to occur in this region, may interact with high CO2 to fincreasesavor the African grasses, as they generally recovered faster after simulated herbivory. The superiority of invader grasses under high CO2 suggests further in their competitive strength and a potential increased rate of displacement of the native savannas in the future by grasslands dominated by introduced African species.  相似文献   
8.
In an effort to develop more holistic ecosystem approaches to resource assessment and management, landscapes need to be stratified into homogeneous geographic regions. These regions can then be used in a monitoring framework to develop reliable estimates of ecosystem productivity. A regional characterization of the woodland biome has been developed for South Africa, delineated by satellite imagery and using environmental data and a rigorous statistical methodology. Distribution maps of key environmental variables are analyzed by factor analysis, an iterative clustering technique and maximum likelihood classification to quantify and identify homogeneous physio-climatic units.A spatial clustering technique was used to identify regions, which are statistically different with regard to five physiographic, climatic and edaphic variables deemed important within southern African savanna woodlands. The woodland biome of South Africa at 1km resolution was successively divided. Thirty year mean monthly temperature, total plant-available water balance of soil, elevation, landscape topographic position, and landscape soil fertility were used as input classification variables.The map data were submitted to a factor analysis and varimax axis rotation. The factor analysis removes correlations from the input variables, reduces the dimensionality, and normalizes the axis measurements. A cluster analysis was performed on the three principal factor scores using a modified iterative optimization clustering procedure to determine the finest level of classes statistically permitable. Twenty-seven identified unimodal cluster signatures were then submitted to a maximum likelihood classification where the statistical probability of the GIS cell assignment is carried out to determine class membership. The final map of custom physio-climatic regions is described, and these custom regions are compared with a vegetation potential map of the woodland types identified in the South African summer rainfall zone.  相似文献   
9.
Turkana tribespeople reside in a semi-arid savanna ecosystem in northwest Kenya. For over a decade, Ngisonyoka Turkana nomads have been studied within a multidisciplinary framework that embraces ecology, anthropology, and human population biology. Original research objectives of the South Turkana Ecosystem Project were to study nomads longitudinally and within the context of the dry savanna ecosystem. These objectives have been expanded to incorporate settled Turkana who were nomads in the recent past, but who, for a variety of reasons, have taken up a life of sedentary cultivation. The research described here focused on comparisons of growth patterns of nomadic and settled infants from birth to 24 months of age. Infants were measured (recumbent length, weight, head circumference, arm and calf circumference, and selected skinfolds) in 1989 and 1990. Settled infants were slightly longer, but nomadic infants were heavier and fatter. Head circumferences were the same. Some variation was observed by season and year of measurement (from comparative surveys). Both groups showed pronounced weight faltering after 6 months of age when compared with U. S. NCHS reference values. Head circumference faltering was moderate and recumbent length faltering was only slight after 12 months of age. Comparisons of Turkana infant growth in the two populations can contribute indirectly to a better understanding of infant nutritional status, probable morbidity, and other factors, some of which may be linked to female reproduction. © 1993 Wiley-Liss, Inc.  相似文献   
10.
Seasonal regulation of leaf water potential (L) was studied in eight dominant woody savanna species growing in Brazilian savanna (Cerrado) sites that experience a 5-month dry season. Despite marked seasonal variation in precipitation and air saturation deficit (D), seasonal differences in midday minimum L were small in all of the study species. Water use and water status were regulated by a combination of plant physiological and architectural traits. Despite a nearly 3-fold increase in mean D between the wet and dry season, a sharp decline in stomatal conductance with increasing D constrained seasonal variation in minimum L by limiting transpiration per unit leaf area (E). The leaf surface area per unit of sapwood area (LA/SA), a plant architectural index of potential constraints on water supply in relation to transpirational demand, was about 1.5–8 times greater in the wet season compared to the dry season for most of the species. The changes in LA/SA from the wet to the dry season resulted from a reduction in total leaf surface area per plant, which maintained or increased total leaf-specific hydraulic conductance (Gt) during the dry season. The isohydric behavior of Cerrado tree species with respect to minimum L throughout the year thus was the result of strong stomatal control of evaporative losses, a decrease in total leaf surface area per tree during the dry season, an increase in total leaf-specific hydraulic conductance, and a tight coordination between gas and liquid phase conductance. In contrast with the seasonal isohydric behavior of minimum L, predawn L in all species was substantially lower during the dry season compared to the wet season. During the dry season, predawn L was more negative than bulk soil estimated by extrapolating plots of E versus L to E=0. Predawn disequilibrium between plant and soil was attributable largely to nocturnal transpiration, which ranged from 15 to 22% of the daily total. High nocturnal water loss may also have prevented internal water storage compartments from being completely refilled at night before the onset of transpiration early in the day.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号