首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   6篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   2篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2004年   1篇
  2003年   3篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有67条查询结果,搜索用时 312 毫秒
1.
Holocene records from the southern Sahara in Niger allow a reconstruction of the vegetation history and inform us about the former extension of the Mediterranean. Both pollen and charcoal analyses evidenced the direct contact of Sudanian and Saharan savannas during the middle Holocene at about 19°N, whereas at 20°N the transition from the Saharan savanna to the desert was found. In southwestern Libya (26°N) a combination of a Saharan desert vegetation and a semi‐desert Artemisia shrub on the plateaus demonstrated the contact with Mediterranean influenced formations. Regular ash and charcoal layers in middle‐Holocene sediments of the northern Niger prove an early interference of man with the vegetation development. One has to imagine that, in combination with the cattle‐keeping and the later metal production, man could have changed the former northern Sudanian vegetation into the present Sahelian savanna system from the middle Holocene on.  相似文献   
2.
3.
Rapid population declines of many long-distance Afro-Palaearctic migratory bird species are ongoing across Europe but the demographic drivers are often poorly understood, thereby limiting the development of appropriate conservation actions. Using long-term population monitoring (39 years), capture–mark–recapture data and a matrix model, we estimated demographic parameters and the effect of climate variables on adult survival, and modelled the dynamics of an increasing population of Eurasian Scops Owls Otus scops in a landscape with agricultural abandonment in western France. The observed mean annual population growth rate was 1.055 (from 68 to 523 territorial males between 1981 and 2019). Over the study period, clutch size and hatching success were stable, but fledging success and breeding success showed slight negative trends, probably due to density-dependence. Survival varied with age, with an increase during early life and evidence for rapid senescence from 4 years old. Adult survival remained stable and was positively linked to the amount of autumn rainfall in the Sahel and to the winter North Atlantic Oscillation. Survival of younger age-classes made the largest contribution to the variance of the population growth rate, followed by clutch size, fledging success and survival of older birds. Such a long-term population increase in a landscape where intensive agriculture has decreased by 64.6% sheds some new light on the causes of the decline of European Scops Owl and other Afro-Palaearctic bird populations. We infer some of the possible causes of this large-scale decline, in particular food shortage, and discuss conservation measures that could be applicable to reverse this trend.  相似文献   
4.
Indigenous fruit tree species such as tamarind (Tamarindus indica L.) in African sub‐Saharan traditionally act to build resilience into the farming system in terms of food security, income generation and ecosystem stability. Therefore, increasing our knowledge on their ecology and distribution is a priority. Tamarind is mainly grown for the fruits but is also a valuable timber species. The fruit pulp has a high content of vitamin B and is eaten fresh or made into jam, chutney, juice or sweets. Flowers, leaves and seeds are also edible and used in a variety of dishes. The main objective of this study is to evaluate actual density of tamarind in Senegal and the climate change effects on its distribution for better conservation strategies. Tamarind's distribution and density around villages were recorded and modelled in different agro‐ecological zones in Senegal using transect method and under current and future climates. Distribution under two future climate scenarios were modelled using four climate models and three time slices (2020, 2050 and 2080). Results show a decreasing gradient in tree density (from 7 to 1 trees km?2) from the Sudano agro‐ecological zone (in the south) to the Sahel (in the north). Future climate predictions show that although tamarind distribution will increase in the north‐west and south of the country in 2020; by 2050, the area identified as suitable for its growth will be greatly reduced. Areas in the north‐west basin appear to be an important refugia for the species under future climate conditions. However, density around villages in this area was found to be relatively low indicating that this could lead to problems of poor connectivity and inbreeding depression. This region should therefore be highlighted as important conservative management and protection strategies of tamarind in this region.  相似文献   
5.
Malaria transmission was monitored in two villages in the Sahel zone of Niger over 4 years. During this period, a nationwide vector control programme was carried out in which insecticide‐treated bednets were distributed free to mothers of children aged <5 years. Anopheles gambiae and Anopheles arabiensis (Diptera: Culicidae) were found to be the major malaria vectors. The dynamics of An. gambiae s.l. did not vary dramatically over the study period although the proportion of female mosquitoes found resting indoors decreased in both villages and, in one village, the parity rate and sporozoite index were significantly reduced after bednet distribution. By contrast with An. gambiae, the dynamics of Anopheles funestus altered greatly after the bednet distribution period, when adult density, endophagous rate and sporozoite rates decreased dramatically. Our observations highlight the importance of quantifying and monitoring the dynamics and infections of malaria vectors during large‐scale vector control interventions.  相似文献   
6.
The activities of nitrate reductase and glutamine synthetase were evaluated in young plants of Faidherbia albida , a tropical woody legume, fed with different N sources under hydroponic conditions. Results showed that assimilation of both NO3 and NH4+ preferentially took place in shoots. A basal amount of nitrate reductase activity was detected in shoots of plants grown with an NO3-free solution or placed under N2-fixing conditions, and also in nodules of N2-fixing plants. This strongly suggests that constitutive nitrate reductase activity is present in these organs. Analyses of the soluble nitrogenous content showed that the major form of N in the different organs was α-amino acids (particularly amides), irrespective of the N status of the culture conditions. The same result was obtained for nodulated plants grown in local sandy soil. In this case, amide-N generally accounted for more than 40% of the total soluble N. This was especially true in nodules. Ureide-N never exceeded 9% of the total soluble N and did not appear to increase with increasing nodule nitrogenase activity. Amides were also predominant in three N2-fixing Sahelian acacias ( Acacia seyal , A. nilotica and A. tortilis ), showing that F. albida does not differ from Sahelian Acacia in terms of the metabolism of fixed N. However, like another Sahelian acacia growing preferentially near water ( A. nilotica ), F. albida can be distinguished from acacias growing strictly in arid zones ( A. seyal and A. tortilis ) in terms of initial growth, water and nitrate management.  相似文献   
7.
Aim This study aims to separate regional and local controls on Holocene vegetation development and examine how well pollen records reflect climate change in a semi‐arid region. The relative importance of climate and human activity as agents of vegetation change in the Sahel during the late Holocene is also considered. Location Jikariya Lake, an inter‐dune depression in the Manga Grasslands of north‐eastern Nigeria. Methods Pollen and charcoal were used to provide a record of Holocene vegetation history. Palaeoclimate and hydrological changes were reconstructed from sedimentary and geochemical data. Regional and local influences were separated by comparing the evidence obtained from Jikariya Lake with previously published data from the Manga Grasslands. Results The Manga Grasslands experienced a prolonged wet period during the early and mid‐Holocene, during which swamp forest vegetation with Guinean affinities (Alchornea, Syzygium, Uapaca) occupied the inter‐dune depressions. However, variation in the pollen records between sites suggests that their establishment was dependent on conditions being locally favourable, rather than being directly coupled to regional climate. The pollen records from the Manga Grasslands are more consistent in suggesting the colonization of the dunefields by trees associated with Sudanian savanna (Combretaceae, Detarium) c. 8700 cal. yr bp . The Jikariya Lake pollen data are in accordance with the sedimentological and geochemical data from the region in indicating that the onset of arid conditions occurred progressively during the late Holocene (from c. 4700 cal. yr bp ). Abrupt changes in pollen stratigraphy, recorded at other Manga Grasslands sites 3500 cal. yr bp , appear to be the product of the local passing of ecological thresholds. The dunefield vegetation (Sahelian savanna) appears to have been resilient to (or at least palynologically silent regarding) to the climatic variability of the late Holocene. Main conclusions While climate appears to have been the primary control on vegetation development in the Manga Grasslands during the Holocene, local conditions (particularly depression size and sand influx) had a strong influence on the timing of pollen stratigraphic changes. Anthropogenic influences are difficult to detect, even during the late Holocene.  相似文献   
8.
A pollen diagram from Oursi in Burkina Faso is compared with anthracological (charcoal analysis) results from three sites in northeast Nigeria (Konduga, Gajiganna, Lantewa). The present-day vegetation at all four sites is Sahelian or Sahelo-Sudanian and under heavy human impact. At Oursi, a closed grassland with only few trees and almost no Sudanian elements can be reconstructed for the middle Holocene. At the Nigerian sites, on the other hand, Sudanian woody plants were present during this period. We assume that the Sahel was not a uniform zone during the middle Holocene but rather a mosaic of different vegetation types according to local site conditions. In the light of these results, a simple model of latitudinally shifting vegetation zones is not applicable. Around 3000 B.P. the closed grassland at Oursi was opened by agro-pastoral activities, and at Gajiganna, plants characteristic of pasture lands can be directly related with the presence of cattle. Human impact seems to have been the dominant factor in the vegetation history of the Sahel from 3000 B.P. until today, masking possible effects of climatic change.  相似文献   
9.
Previous research into drought-response tactics has tended to be undertaken after the fact, and hence has been forced to be impressionistic. This study quantifies the importance of farmer drought-response strategies in southcentral Niger based on a survey which began during the drought of 1984. Livestock sales, food aid, temporary migration, remunerative non-agricultural activities, and loans were the principal drought-survival tactics employed  相似文献   
10.
The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350–1800 nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land‐atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable for investigating relationships between ecosystem properties and hydroclimatic variables for semiarid savanna ecosystems of the region. There were strong interannual, seasonal and diurnal dynamics in NEE, with high values of ~?7.5 g C m?2 day?1 during the peak of the growing season. We found neither browning nor greening NDVI trends from 2002 to 2012. Interannual variation in species composition was strongly related to rainfall distribution. NDVI and FAPAR were strongly related to species composition, especially for years dominated by the species Zornia glochidiata. This influence was not observed in interannual variation in biomass and vegetation productivity, thus challenging dryland productivity models based on remote sensing. Surface reflectance anisotropy (350–1800 nm) at the peak of the growing season varied strongly depending on wavelength and viewing angle thereby having implications for the design of remotely sensed spectral vegetation indices covering different wavelength regions. The presented time series of in situ data have great potential for dryland dynamics studies, global climate change related research and evaluation and parameterization of remote sensing products and dynamic vegetation models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号