首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  国内免费   2篇
  2021年   2篇
  2018年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
排序方式: 共有15条查询结果,搜索用时 203 毫秒
1.
2.
Visual information processing is adapted to the statistics of natural visual stimuli, and these statistics depend to a large extent on the movements of an animal itself. To investigate such movements in freely walking blowflies, we measured the orientation and position of their head and thorax, with high spatial and temporal accuracy. Experiments were performed on Calliphora vicina, Lucilia cuprina and L. caesar. We found that thorax and head orientation of walking flies is typically different from the direction of walking, with differences of 45° common. During walking, the head and the thorax turn abruptly, with a frequency of 5–10 Hz and angular velocities in the order of 1,000°/s. These saccades are stereotyped: head and thorax start simultaneously, with the head turning faster, and finishing its turn before the thorax. The changes in position during walking are saccade-like as well, occurring synchronously, but on average slightly after the orientation saccades. Between orientation saccades the angular velocities are low and the head is held more stable than the thorax. We argue that the strategy of turning by saccades improves the performance of the visual system of blowflies.  相似文献   
3.
The eyes of stalk-eyed flies (Diopsidae) are positioned at the end of rigid peduncles projected laterally from the head. In dimorphic species the eye-stalks of males exceed the eye-stalks of females and can exceed body length. Eye-stalk length is sexually selected in males improving male reproductive success. We tested whether the long eye-stalks have a negative effect on free-flight and aerial turning behavior by analyzing the morphology and free-flight trajectories of male and female Cyrtodiopsis dalmanni. At flight posture the mass-moment-of-inertia for rotation about a vertical axis was 1.49-fold higher in males. Males also showed a 5% increase in wing length compared to females. During free-flight females made larger turns than males (54 ± 31.4 vs. 49 ± 36.2°, t test, P < 0.033) and flew faster while turning (9.4 ± 5.45 vs. 8.4 ± 6.17 cm s−1, ANOVA, P < 0.021). However, turning performance of both sexes overlapped, and turn rate in males even marginally exceeded turn rate in females (733 ± 235.3 vs. 685 ± 282.6 deg s−1, ANCOVA, P < 0.047). We suggest that the increase in eye-span does result in an increase in the mechanical requirements for aerial turning but that male C. dalmanni are capable of compensating for the constraint of longer eye-stalks during the range of turns observed through wingbeat kinematics and increased wing size.  相似文献   
4.
Blinks and saccades cause transient interruptions of visual input. To investigate how such effects influence our perceptual state, we analyzed the time courses of blink and saccade rates in relation to perceptual switching in the Necker cube. Both time courses of blink and saccade rates showed peaks at different moments along the switching process. A peak in blinking rate appeared 1,000 ms prior to the switching responses. Blinks occurring around this peak were associated with subsequent switching to the preferred interpretation of the Necker cube. Saccade rates showed a peak 150 ms prior to the switching response. The direction of saccades around this peak was predictive of the perceived orientation of the Necker cube afterwards. Peak blinks were followed and peak saccades were preceded by transient parietal theta band activity indicating the changing of the perceptual interpretation. Precisely-timed blinks, therefore, can initiate perceptual switching, and precisely-timed saccades can facilitate an ongoing change of interpretation.  相似文献   
5.
To investigate the saccadic system in the mantis, I applied distracter interference paradigms. These involved presenting the mantis with a fixation target and one or several distracters supposed to affect saccades towards the target. When a single target was presented, a medium-sized target located in its lower visual field elicited higher rates of saccade response. This preference for target size and position was also observed when a target and a distracter were presented simultaneously. That is, the mantis chose and fixated the target rather than a distracter that was much smaller or larger than the target, or was located above the target. Furthermore, the mantis' preference was not affected by increasing the number of distracters. However, the presence of the distracter decreased the occurrence rate of saccade and increased the response time to saccade. I conclude that distracter interference paradigms are an effective way of investigating the visual processing underlying saccade generation in the mantis. Possible mechanisms of saccade generation in the mantis are discussed.  相似文献   
6.
In this article results of several published studies are synthesized in order to address the neural system for the determination of eye and head movement amplitudes of horizontal eye/head gaze shifts with arbitrary initial head and eye positions. Target position, initial head position, and initial eye position span the space of physical parameters for a planned eye/head gaze saccade. The principal result is that a functional mechanism for determining the amplitudes of the component eye and head movements must use the entire space of variables. Moreover, it is shown that amplitudes cannot be determined additively by summing contributions from single variables. Many earlier models calculate amplitudes as a function of one or two variables and/or restrict consideration to best-fit linear formulae. Our analysis systematically eliminates such models as candidates for a system that can generate appropriate movements for all possible initial conditions. The results of this study are stated in terms of properties of the response system. Certain axiom sets for the intrinsic organization of the response system obey these properties. We briefly provide one example of such an axiomatic model. The results presented in this article help to characterize the actual neural system for the control of rapid eye/head gaze shifts by showing that, in order to account for behavioral data, certain physical quantities must be represented in and used by the neural system. Our theoretical analysis generates predictions and identifies gaps in the data. We suggest needed experiments.  相似文献   
7.
Humans and other primates are equipped with a foveated visual system. As a consequence, we reorient our fovea to objects and targets in the visual field that are conspicuous or that we consider relevant or worth looking at. These reorientations are achieved by means of saccadic eye movements. Where we saccade to depends on various low-level factors such as a targets’ luminance but also crucially on high-level factors like the expected reward or a targets’ relevance for perception and subsequent behavior. Here, we review recent findings how the control of saccadic eye movements is influenced by higher-level cognitive processes. We first describe the pathways by which cognitive contributions can influence the neural oculomotor circuit. Second, we summarize what saccade parameters reveal about cognitive mechanisms, particularly saccade latencies, saccade kinematics and changes in saccade gain. Finally, we review findings on what renders a saccade target valuable, as reflected in oculomotor behavior. We emphasize that foveal vision of the target after the saccade can constitute an internal reward for the visual system and that this is reflected in oculomotor dynamics that serve to quickly and accurately provide detailed foveal vision of relevant targets in the visual field.  相似文献   
8.
Recent work on the coding of spatial information in the brain has significantly advanced our knowledge of sensory to motor transformations on several fronts. The encoding of information referenced to the retina (eye-centered) but modulated by eye position, called a gain field representation, has proved to be very common throughout parietal and occipital cortex. The use of an eye-centered representation as a working memory of spatial location is problematic if the eyes move during the memory period. Details regarding the manner in which the brain solves this problem are beginning to emerge. Finally, the discovery of eye-centered representations of ongoing or intended arm movements has changed the way we think about the order of operations in the sensory to motor coordinate transformation.  相似文献   
9.
When we look at a stationary object, the perceived direction of gaze (where we are looking) is aligned with the physical direction of eyes (where our eyes are oriented) by which the object is foveated. However, this alignment may not hold in a dynamic situation. Our experiments assessed the perceived locations of two brief stimuli (1 ms) simultaneously displayed at two different physical locations during a saccade. The first stimulus was in the instantaneous location to which the eyes were oriented and the second one was always in the same location as the initial fixation point. When the timing of these stimuli was changed intra-saccadically, their perceived locations were dissociated. The first stimuli were consistently perceived near the target that will be foveated at saccade termination. The second stimuli once perceived near the target location, shifted in the direction opposite to that of saccades, as its latency from saccades increased. These results suggested an independent adjustment of gaze orientation from the physical orientation of eyes during saccades. The spatial dissociation of two stimuli may reflect sensorimotor control of gaze during saccades.  相似文献   
10.
The visual orienting behaviour towards prey in the free-moving mantis was investigated with a high-speed camera. The orienting behaviour consisted of head, prothorax, and abdomen rotations. Coordinated movements of these body parts in the horizontal plane were analysed frame-by-frame. Rotations of these body parts were initiated with no or slight (≤40 ms) differences in timing. The initiation timing of prothorax-abdomen rotation was affected by its initial angle before the onset of orienting. There were positive correlations in amplitude among head-prothorax, prothorax-abdomen, and abdomen rotations. The ratio of these rotations to total gaze rotation was affected by the initial prothorax-abdomen angle before the onset of orienting. Our data suggest that coordinated movements of the head, prothorax, and abdomen during orienting are ballistic events and are pre-determined according to visual and proprioceptive information before the onset of orienting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号