首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   5篇
  国内免费   4篇
  2023年   21篇
  2022年   12篇
  2021年   13篇
  2020年   7篇
  2019年   5篇
  2018年   7篇
  2017年   4篇
  2016年   4篇
  2015年   2篇
  2014年   8篇
  2013年   6篇
  2010年   2篇
  2009年   1篇
排序方式: 共有92条查询结果,搜索用时 15 毫秒
1.
Thanks to the numerous studies that have been carried out recently in the field of cytosolic DNA sensing, STING (Stimulator of Interferon Genes) is now recognized as a key mediator of innate immune signaling. A substantial body of evidence derived from in vivo mouse models demonstrates that STING-regulated pathways underlie the pathogenesis of many diseases including infectious diseases and cancers. It has also become evident from these studies that STING is a promising therapeutic target for the treatment of cancer. However, mouse strains commonly used for modelling innate immune response against infections or tumors do not allow investigators to accurately reproduce certain specific characteristics of immune response observed in human cells. In this review, we will discuss recent data demonstrating that the use of wild-derived genetically distinct inbred mice as a model for investigation into the innate immunity signaling networks may provide valuable insight into the STING-regulated pathways specific for human cells. The maximum complexity of STING-mediated mechanisms can probably be seen in case of DNA virus-induced carcinogenesis in which STING may perform unexpected biological activities. Therefore, in another part of this review we will summarize emerging data on the role of STING in human DNA virus-related oncopathologies, with particular attention to HPV-associated cervical cancer, aiming to demonstrate that STING indeed “starts a new chapter” in research on this issue and that wild-derived mouse models of STING-mediated response to infections will probably be helpful in finding out molecular basis for clinical observations.  相似文献   
2.
Nanosized cellular vesicles “exosome” contains a variety of biological cargo including DNA fragments from cell-of-origin. Despite its biological stability and clinical utility in tumor diagnosis, exosome DNA (ExoDNA) is very little studied as compare with exosome RNA. Cytoplasmic accumulation of damaged DNA from nucleus and mitochondria often leads to its packaging in exosomes by yet unknown pathways. ExoDNA modulates tumor immunity via paracrine interactions and activation of cytosolic DNA sensor pathways, for example, STING, cGAS, and so forth in specific immune cell subsets. In addition to priming tumor immunity, ExoDNA is also emerging as a critical regulator of check-point immunotherapy. As a useful diagnostic biomaterial, ExoDNA contains a variety of clinically relevant tumor-specific mutations representing multiple genes (e.g., EGFR, BRAF, RAS, IDH, and HER2), thus making it a promising “liquid biopsy” material for therapy recommendations. Hence, ExoDNA in addition to tumor immunity modulation, is also emerging as a suitable diagnostic material for personalized therapy in cancer. Here, we review the current status of ExoDNA research and its potential uses in tumor biology.  相似文献   
3.
Extensive research on antiviral small molecules starting in the early 1970s has led to the identification of 10‐carboxymethyl‐9‐acridanone (CMA) as a potent type I interferon (IFN) inducer. Up to date, the mode of action of this antiviral molecule has remained elusive. Here we demonstrate that CMA mediates a cell‐intrinsic type I IFN response, depending on the ER‐resident protein STING. CMA directly binds to STING and triggers a strong antiviral response through the TBK1/IRF3 route. Interestingly, while CMA displays extraordinary activity in phosphorylating IRF3 in the murine system, CMA fails to activate human cells that are otherwise responsive to STING ligands. This failure to activate human STING can be ascribed to its inability to bind to the C‐terminal ligand‐binding domain of human STING. Crystallographic studies show that two CMA molecules bind to the central Cyclic diguanylate ( c‐diGMP)‐binding pocket of the STING dimer and fold the lid region in a fashion similar, but partially distinct, to c‐diGMP. Altogether, these results provide novel insight into ligand‐sensing properties of STING and, furthermore, unravel unexpected species‐specific differences of this innate sensor.  相似文献   
4.
5.
  相似文献   
6.
《Developmental cell》2023,58(9):760-778.e6
  1. Download : Download high-res image (194KB)
  2. Download : Download full-size image
  相似文献   
7.
Autophagy plays important roles in modulating viral replication and antiviral immune response. Coronavirus infection is associated with the autophagic process, however, little is known about the mechanisms of autophagy induction and its contribution to coronavirus regulation of host innate responses. Here, we show that the membrane-associated papain-like protease PLP2 (PLP2-TM) of coronaviruses acts as a novel autophagyinducing protein. Intriguingly, PLP2-TM induces incomplete autophagy process by increasing the accumulation of autophagosomes but blocking the fusion of autophagosomes with lysosomes. Furthermore, PLP2-TM interacts with the key autophagy regulators, LC3 and Beclin1, and promotes Beclin1 interaction with STING, the key regulator for antiviral IFN signaling. Finally, knockdown of Beclin1 partially reverses PLP2-TM’s inhibitory effect on innate immunity which resulting in decreased coronavirus replication. These results suggested that coronavirus papain-like protease induces incomplete autophagy by interacting with Beclin1, which in turn modulates coronavirus replication and antiviral innate immunity.  相似文献   
8.
9.
Retroviruses can selectively trigger an array of innate immune responses through various PRR. The identification and the characterization of the molecular basis of retroviral DNA sensing by the DNA sensors IFI16 and cGAS has been one of the most exciting developments in viral immunology in recent years. DNA sensing by these cytosolic sensors not only leads to the initiation of the type I interferon (IFN) antiviral response and the induction of the inflammatory response, but also triggers cell death mechanisms including pyroptosis and apoptosis in retrovirus-infected cells, thereby providing important insights into the pathophysiology of chronic retroviral infection. Host restriction factors such as SAMHD1 and Trex1 play important roles in regulating innate immune sensing, and have led to the idea that innate immune defense and host restriction actually converge at different levels to determine the outcome of retroviral infection. In this review, we discuss the sensing of retroviruses by cytosolic DNA sensors, the relevance of host factors during retroviral infection, and the interplay between host factors and the innate antiviral response in different cell types, within the context of two human pathogenic retroviruses – human immunodeficiency virus (HIV-1) and human T cell-leukemia virus type I (HTLV-1).  相似文献   
10.
引起人类呼吸道感染的冠状病毒已多达5种.冠状病毒与宿主相互作用决定了其致病性和免疫特性.冠状病毒感染后宿主会立即启动抗病毒天然免疫反应,而人类冠状病毒往往会编码特定蛋白逃逸或抑制宿主的天然免疫反应.NL63冠状病毒是一种新型人类冠状病毒,其非结构蛋白nsp3编码2个木瓜样蛋白酶(PLP)核心结构域PLP1和PLP2.前期研究发现,人类冠状病毒PLP2是一种病毒编码的去泛素化酶(DUB),但是对其DUB特性和功能还不清楚.研究发现,NL63冠状病毒PLP1和PLP2两个核心结构域中只有PLP2具有DUB活性,而且,PLP2的DUB活性对K48和K63连接的多聚泛素化修饰不表现明显特异性.同时,蛋白酶活性催化位点C1678和H1836突变后对其DUB活性有明显抑制作用,而蛋白酶活性催化位点D1849突变后对DUB活性无影响.其次,PLP2而非PLP1核心结构域能够明显抑制仙台病毒和重要信号蛋白(RIG-I、ERIS/STING/MITA)激活的干扰素表达,表明PLP2是一种冠状病毒编码的干扰素拮抗剂,而且PLP2的干扰素拮抗作用不完全依赖其蛋白酶活性.机制研究表明,PLP2能够与干扰素表达通路中的重要调节蛋白RIG-I和ERIS发生相互作用,通过对RIG-I和ERIS的去泛素化负调控宿主抗病毒天然免疫反应.此外,PLP2除利用DUB活性抑制干扰素表达外,很可能存在不依赖自身催化活性的其他组分共同抑制干扰素的产生.以上研究对阐明人类新发冠状病毒免疫和致病机理以及抗病毒药物研发具有重要参考价值.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号