首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  国内免费   1篇
  2019年   1篇
  2018年   2篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2006年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
2.
目的设计一种基于中医按摩的电刺激仪器——将产生的电刺激信号通过中医的按摩手法给患者按摩。方法研究采用STC89C58RD+单片机作为控制器,采用LCD点阵液晶显示作为可视化的提示工具,采用4*4矩阵键盘作为输入控制接口,采用变压器作为电刺激信号升压器件。结果研究实现了预期目标,用户可通过LCD提示输入控制点刺激信号强度的按键,单片机处理后输出相应的脉冲波形,进而触发生成用于按摩的电刺激信号。结论对51单片机开发应用,实现了输入不同的频率信息,产生不同强度的电刺激信号,使人感觉不同程度的麻刺激,能够用于治疗和保健。  相似文献   
3.
DNA transposition reactions typically involve a strand transfer step wherein the transposon ends are covalently joined by the transposase protein to a short target site. There is very little known about the transposase-DNA interactions that direct this process, and thus our overall understanding of the dynamics of DNA transposition reactions is limited. Tn5 presents an attractive system for defining such interactions because it has been possible to solve the structure of at least one Tn5 transposition intermediate: a transpososome formed with pre-cleaved ends. However, insertion specificity in the Tn5 system is low and this has hampered progress in generating target-containing transpososomes that are homogeneous in structure (i.e. where a single target site is engaged) and therefore suitable for biochemical and structural analysis. We have developed a system where the Tn5 transpososome integrates almost exclusively into a single target site within a short DNA fragment. The key to establishing this high degree of insertion specificity was to use a target DNA with tandem repeats of a previously characterized Tn5 insertion hotspot. The target DNA requirements to form this strand transfer complex are evaluated. In addition, we show that target DNAs missing single phosphate groups at specific positions are better substrates for strand transfer complex formation relative to the corresponding unmodified DNA fragments. Moreover, utilization of missing phosphate substrates can increase the degree of target site selection. A method for concentrating and partially purifying the Tn5 strand transfer complex is described.  相似文献   
4.
Stanniocalcin (STC), a glycoprotein hormone originally discovered in fish, has been implicated in calcium and phosphate homeostasis. While fishes and mammals possess two STC homologs (STC1 and STC2), the physiological roles of STC2 are largely unknown compared with those of STC1. In this study, we identified Ran-binding protein M (RanBPM) as a novel binding partner of STC2 using yeast two-hybrid screening. The interaction between STC2 and RanBPM was confirmed in mammalian cells by immunoprecipitation. STC2 enhanced the RanBPM-mediated transactivation of liganded androgen receptor (AR), but not thyroid receptor β, glucocorticoid receptor, or estrogen receptor β. We also found that AR interacted with RanBPM in both the absence and presence of testosterone (T). Furthermore, we discovered that STC2 recruits RanBPM/AR complex in T-dependent manner. Taken together, our findings suggest that STC2 is a novel RanBPM-interacting protein that promotes AR transactivation. [BMB Reports 2014; 47(11): 643-648]  相似文献   
5.
Natural polysaccharides, derived from biomass feedstocks, marine resources, and microorganisms, have been attracting considerable attention as benign and environmentally friendly substitutes for synthetic polymeric products. Besides many other applications, these biopolymers are rapidly emerging as viable alternatives to harmful synthetic flocculating agents for the removal of contaminants from water and wastewater. In recent years, a great deal of effort has been devoted to improve the production and performance of polysaccharide bio-based flocculants. In this review, current trends in preparation and chemical modification of polysaccharide bio-based flocculants and their flocculation performance are discussed. Aspects including mechanisms of flocculation, biosynthesis, classification, purification and characterization, chemical modification, the effect of physicochemical factors on flocculating activity, and recent applications of polysaccharide bio-based flocculants are summarized and presented.  相似文献   
6.
A macromolecular nucleoprotein complex in retrovirus-infected cells, termed the preintegration complex, is responsible for the concerted integration of linear viral DNA genome into host chromosomes. Isolation of sufficient quantities of the cytoplasmic preintegration complexes for biochemical and biophysical analysis is difficult. We investigated the architecture of HIV-1 nucleoprotein complexes involved in the concerted integration pathway in vitro. HIV-1 integrase (IN) non-covalently juxtaposes two viral DNA termini forming the synaptic complex, a transient intermediate in the integration pathway, and shares properties associated with the preintegration complex. IN slowly processes two nucleotides from the 3′ OH ends and performs the concerted insertion of two viral DNA ends into target DNA. IN remains associated with the concerted integration product, termed the strand transfer complex. The synaptic complex and strand transfer complex can be isolated by native agarose gel electrophoresis. In-gel fluorescence resonance energy transfer measurements demonstrated that the energy transfer efficiencies between the juxtaposed Cy3 and Cy5 5′-end labeled viral DNA ends in the synaptic complex (0.68 ± 0.09) was significantly different from that observed in the strand transfer complex (0.07 ± 0.02). The calculated distances were 46 ± 3 Å and 83 ± 5 Å, respectively. DNaseI footprint analysis of the complexes revealed that IN protects U5 and U3 DNA sequences up to ∼ 32 bp from the end, suggesting two IN dimers were bound per terminus. Enhanced DNaseI cleavages were observed at nucleotide positions 6 and 9 from the terminus on U3 but not on U5, suggesting independent assembly events. Protein-protein cross-linking of IN within these complexes revealed the presence of dimers, tetramers, and a larger multimer (> 120 kDa). Our results suggest a new model where two IN dimers individually assemble on U3 and U5 ends before the non-covalent juxtaposition of two viral DNA ends, producing the synaptic complex.  相似文献   
7.
Kinesin motor proteins comprise an ATPase superfamily that works hand in hand with microtubules in every eukaryote. The mitotic kinesins, by virtue of their potential therapeutic role in cancerous cells, have been a major focus of research for the past 28 years since the discovery of the canonical Kinesin-1 heavy chain. Perhaps the simplest player in mitotic spindle assembly, Kinesin-5 (also known as Kif11, Eg5, or kinesin spindle protein, KSP) is a plus-end-directed motor localized to interpolar spindle microtubules and to the spindle poles. Comprised of a homotetramer complex, its function primarily is to slide anti-parallel microtubules apart from one another. Based on multi-faceted analyses of this motor from numerous laboratories over the years, we have learned a great deal about the function of this motor at the atomic level for catalysis and as an integrated element of the cytoskeleton. These data have, in turn, informed the function of motile kinesins on the whole, as well as spearheaded integrative models of the mitotic apparatus in particular and regulation of the microtubule cytoskeleton in general. We review what is known about how this nanomotor works, its place inside the cytoskeleton of cells, and its small-molecule inhibitors that provide a toolbox for understanding motor function and for anticancer treatment in the clinic.  相似文献   
8.
9.
10.
Breast cancer (BC) is known as the most deadly cancer among females, worldwide. Despite the research advances in this regard, effective diagnosis and treatment still have a long way to go. In this study, our stance was to investigate the regulatory mechanism of miR-190 on epithelial-mesenchymal transition (EMT) and angiogenesis via mediation of protein kinase B (AKT)-extracellular signal-regulated kinase (ERK) signaling pathway by targeting stanniocalicin 2 (STC2) in BC. The BC gene chip was retrieved with differentially expressed genes (DEGs) obtained. MDA-MB-231 and T47D cell lines were selected and separately introduced with miR-190 inhibitors, activators, and small interfering RNAs with the intent of exploring the regulatory functions that miR-190 has shown while governing STC2 in BC. The regulatory effect of miR-190 on cell proliferation, migration, invasion, and angiogenesis was evaluated, followed by determination of AKT-ERK signaling pathway-related factors, EMT-related factors, and angiogenesis-related factors. The xenograft tumor of nude mice was also implemented for determining the change of tumor after transfection. The GSE26910 gene chip was obtained with STC2 being selected as the potential DEG. STC2 was the target gene of miR-190. The results showed that cells introduced with the miR-190 activators along with small interfering RNA-STC2 inhibited proliferation, invasion, migration, angiogenesis, as well as EMT. Moreover, the in vivo experiment also went on to confirm that the tumor volume had significantly increased in the nude mice along with an elevated expression of miR-190. Collectively, the findings suggested that overexpression of miR-190 inhibited EMT and angiogenesis by inactivating AKT-ERK signaling pathway via STC2 in BC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号