首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2020年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Upon entering its mammalian host, the malaria parasite productively invades two distinct cell types, that is, hepatocytes and erythrocytes during which several adhesins/invasins are thought to be involved. Many surface-located proteins containing thrombospondin Type I repeat (TSR) which help establish host–parasite molecular crosstalk have been shown to be essential for mammalian infection. Previous reports indicated that antibodies produced against Plasmodium falciparum secreted protein with altered thrombospondin repeat (SPATR) block hepatocyte invasion by sporozoites but no genetic evidence of its contribution to invasion has been reported. After failing to generate Spatr knockout in Plasmodium berghei blood stages, a conditional mutagenesis system was employed. Here, we show that SPATR plays an essential role during parasite's blood stages. Mutant salivary gland sporozoites exhibit normal motility, hepatocyte invasion, liver stage development and rupture of the parasitophorous vacuole membrane resulting in merosome formation. But these mutant hepatic merozoites failed to establish a blood stage infection in vivo. We provide direct evidence that SPATR is not required for hepatocyte invasion but plays an essential role during the blood stages of P. berghei.  相似文献   
2.
To identify new vaccine candidates, Eimeria tenella expressed sequence tags (ESTs) from public databases were analysed for secretory molecules with an especially developed automated in silico strategy termed DNAsignalP. A total of 12,187 ESTs were clustered into 2881 contigs followed by a blastx search, which resulted in a significant number of E. tenella contigs with homologies to entries in public databases. Amino acid sequences of appropriate homologous proteins were analysed for the occurrence of an N-terminal signal sequence using the algorithm signalP. The resulting list of 84 entries comprised 51 contigs whose deduced proteins showed homologies to proteins of apicomplexan parasites. Based on function or localisation, we selected candidate proteins classified as (i) secreted proteins of Apicomplexa parasites, (ii) secreted enzymes, and (iii) transport and signalling proteins. To verify our strategy experimentally, we used a functional complementation system in yeast. For five selected candidate proteins we found that these were indeed secreted. Our approach thus represents an efficient method to identify secretory and surface proteins out of EST databases.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号