首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   6篇
  国内免费   2篇
  2024年   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   3篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有17条查询结果,搜索用时 328 毫秒
1.
The increase in bone resorption and/or the inhibition of bone regeneration caused by wear particles are the main causes of periprosthetic osteolysis. The SOST gene and Sclerostin, a protein synthesized by the SOST gene, are the characteristic marker of osteocytes and regulate bone formation and resorption. We aimed to verify whether the SOST gene was involved in osteolysis induced by titanium (Ti) particles and to investigate the effects of SOST reduction on osteolysis. The results showed osteolysis on the skull surface with an increase of sclerostin levels after treated with Ti particles. Similarly, sclerostin expression in MLO-Y4 osteocytes increased when treated with Ti particles in vitro. After reduction of SOST, local bone mineral density and bone volume increased, while number of lytic pores on the skull surface decreased and the erodibility of the skull surface was compensated. Histological analyses revealed that SOST reduction increased significantly alkaline phosphatase- (ALP) and osterix-positive expression on the skull surface which promoted bone formation. ALP activity and mineralization of MC3T3-E1 cells also increased in vitro when SOST was silenced, even if treated with Ti particles. In addition, Ti particles decreased β-catenin expression with an increase in sclerostin levels, in vivo and in vitro. Inversely, reduction of SOST expression increased β-catenin expression. In summary, our results suggested that reduction of SOST gene can activate the Wnt/β-catenin signalling pathway, promoting bone formation and compensated for bone loss induced by Ti particles. Thus, this study provided new perspectives in understanding the mechanisms of periprosthetic osteolysis.  相似文献   
2.
3.
Wnt proteins are secreted glycoproteins that bind to the N-terminal extra-cellular cysteine-rich domain of the Frizzled (Fzd) receptor family. The Fzd receptors can respond to Wnt proteins in the presence of Wnt co-receptors to activate the canonical and non-canonical Wnt pathways. Recent studies indicated that, among the Fzd family, Fzd7 is the Wnt receptor most commonly upregulated in a variety of cancers including colorectal cancer, hepatocellular carcinoma and triple negative breast cancer. Fzd7 plays an important role in stem cell biology and cancer development and progression. In addition, it has been demonstrated that siRNA knockdown of Fzd7, the anti-Fzd7 antibody or the extracellular peptide of Fzd7 (soluble Fzd7 peptide) displayed anti-cancer activity in vitro and in vivo mainly due to the inhibition of the canonical Wnt signaling pathway. Furthermore, pharmacological inhibition of Fzd7 by small interfering peptides or a small molecule inhibitor suppressed β-catenin-dependent tumor cell growth. Therefore, targeted inhibition of Fzd7 represents a rational and promising new approach for cancer therapy.  相似文献   
4.

Objectives

The aim of this study was to investigate whether sclerostin (SOST) regulates the osteogenic differentiation of rat ectomesenchymal stem cells (EMSCs) and whether SOST and low‐affinity nerve growth factor receptor (LNGFR) regulate the osteogenic differentiation of EMSCs.

Materials and methods

EMSCs were isolated from embryonic facial processes from an embryonic 12.5‐day (E12.5d) pregnant Sprague‐Dawley rat. LNGFR+ EMSCs and LNGFR? EMSCs were obtained by fluorescence‐activated cell sorting and were subsequently induced to undergo osteogenic differentiation in vitro. SOST/LNGFR small‐interfering RNAs and SOST/LNGFR overexpression plasmids were used to transfect EMSCs.

Results

LNGFR+ EMSCs displayed a higher osteogenic capacity and lower SOST levels compared with LNGFR? EMSCs. SOST silencing enhanced the osteogenic differentiation of LNGFR? EMSCs, while SOST overexpression attenuated the osteogenic differentiation of LNGFR+ EMSCs. Moreover, LNGFR was present upstream of SOST and strengthened the osteogenic differentiation of EMSCs by decreasing SOST.

Conclusions

SOST alleviated the osteogenic differentiation of EMSCs, and LNGFR enhanced the osteogenic differentiation of EMSCs by decreasing SOST, suggesting that the LNGFR/SOST pathway may be a novel target for promoting dental tissue regeneration and engineering.
  相似文献   
5.
摘要 目的:探讨血清鸢尾素(Irisin)、骨硬化蛋白(SOST)、硫化氢(H2S)与膝骨关节炎(KOA)合并骨质疏松症(OP)患者骨密度、骨代谢标志物的相关性,分析Irisin、SOST、H2S预测KOA合并OP的价值。方法:选取2020年4月至2023年4月我院收治的179例KOA患者,根据是否合并OP将其分为OP组(68例)和非OP组(111例)。检测血清Irisin、SOST、H2S和骨代谢标志物骨钙素(OC)、骨碱性磷酸酶(BALP)、Ⅰ型原胶原N-端前肽(PINP)、抗酒石酸酸性磷酸酶异体(TRACP5b)水平,股骨颈、腰椎L1~4骨密度。Pearson分析血清Irisin、SOST、H2S与股骨颈、腰椎L1~4骨密度和血清骨代谢标志物的相关性,受试者工作特征(ROC)曲线分析血清Irisin、SOST、H2S对KOA合并OP的预测价值。结果:OP组血清Irisin、H2S、OC、BALP、PINP水平,股骨颈、腰椎L1~4骨密度低于非OP组(P<0.05),TRACP、SOST水平高于非OP组(P<0.05)。OP组血清Irisin、H2S水平与股骨颈、腰椎L1~4骨密度,血清OC、BALP、PINP水平呈正相关(P<0.05),与血清TRACP水平呈负相关(P<0.05);SOST水平与股骨颈、腰椎L1~4骨密度,血清OC、BALP、PINP水平呈负相关(P<0.05),与血清TRACP水平呈正相关(P<0.05)。Irisin、SOST、H2S预测KOA合并OP的曲线下面积为0.784、0.773、0.755,联合预测KOA合并OP的曲线下面积为0.908,高于单独预测。结论:KOA合并OP患者血清Irisin、H2S水平降低、SOST水平增高,低水平Irisin、H2S和高水平SOST与骨密度降低、骨代谢异常有关,可用于预测KOA合并OP患者骨代谢异常状态和骨质流失风险。  相似文献   
6.
7.
Sclerostin has been identified as a negative regulator of bone growth. Initially it was considered that Sclerostin performs its regulatory function via acting as a modulator of bone morphogenetic proteins (BMPs) similar to known examples such as Noggin, Chordin, and members of the DAN family. Recent findings, however, show that Sclerostin interferes with the Wnt signaling pathway due to binding to the Wnt co-receptor LRP5 thereby modulating bone growth. As Sclerostin is exclusively produced by osteocytes located in bones, neutralization of its bone-inhibiting functions makes it a highly interesting target for an osteoanabolic therapeutic approach in diseases characterized by bone loss, such as osteoporosis. Despite the huge interest in Sclerostin inhibitors the molecular basis of its function and its interaction with components of the Wnt signaling cascade has remained unclear. Here, we present the NMR structure of murine Sclerostin providing the first insights how Sclerostin might bind to LRP5.  相似文献   
8.
The morphology of the osteocyte changes during the cell's lifetime. Shortly after becoming buried in the matrix, an osteocyte is plump with a rich rough endoplasmic reticulum and a well-developed Golgi complex. This "immature" osteocyte reduces its number of organelles to become a "mature" osteocyte when it comes to reside deeper in the bone matrix. We hypothesized that mineralization of the surrounding matrix is the trigger for osteocyte maturation. To verify this, we prevented mineralization of newly formed matrix by administration of 1-hydroxyethylidene-1,1-bisphosphonate (HEBP) and then examined the morphological changes in the osteocytes in rats. In the HEBP group, matrix mineralization was disturbed, but matrix formation was not affected. The osteocytes found in the unmineralized matrix were immature. Mature osteocytes were seen in the corresponding mineralized matrix in the control group. The immature osteocytes in the unmineralized matrix failed to show immunoreactivity with anti-sclerostin antibody, whereas mature osteocytes in the mineralized matrix showed immunoreactivity in both control and HEBP groups. These findings suggest that mineralization of the matrix surrounding the osteocyte is the trigger for cytodifferentiation from a plump immature form to a mature osteocyte. The osteocyte appears to start secreting sclerostin only after it matures in the mineralized bone matrix.  相似文献   
9.
10.
SOST is a negative regulator of bone formation, and mutations in human SOST are responsible for sclerosteosis. In addition to high bone mass, sclerosteosis patients occasionally display hand defects, suggesting that SOST may function embryonically. Here we report that overexpression of SOST leads to loss of posterior structures of the zeugopod and autopod by perturbing anterior-posterior and proximal-distal signaling centers in the developing limb. Mutant mice that overexpress SOST in combination with Grem1 and Lrp6 mutations display more severe limb defects than single mutants alone, while Sost/ significantly rescues the Lrp6/ skeletal phenotype, signifying that SOST gain-of-function impairs limb patterning by inhibiting the WNT signaling through LRP5/6.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号