首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2019年   2篇
  2013年   1篇
  2012年   3篇
  2008年   2篇
  2007年   2篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Oxytocin (OT) is essentially associated with uterine contraction during parturition and milk ejection reflex. Although several studies implicate the role of OT in anti-inflammatory, anti-oxidative and anti-apoptotic pathways, there is a lack of data with regard to the protective effects of oxytocin in neurodegenerative models such as Parkinson's disease (PD). The present study was undertaken to investigate the neuroprotective effects of oxytocin (OT) on rotenone-induced PD in rats. Twenty adult Sprague-Dawley rats were injected with rotenone (3 μg/μl in DMSO) or vehicle (1 μl DMSO) into the left substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) under stereotaxic surgery, and PD model was assessed by rotational test ten days after drug infusion. The valid PD rats were randomly divided into two groups; Group 1 (n = 7) and Group 2 (n = 7) were administered saline (1 ml/kg/day, i.p.) and oxytocin (160 μg/kg/day, i.p.) through 20 days, respectively. The effects of OT treatment were evaluated by behavioral, histological and immunohistochemical parameters. Apomorphine-induced stereotypic rotations in PD rats were significantly inhibited by OT treatment (p < 0.05). In addition, immunohistochemical studies clearly demonstrated the suppression of Bax, caspase-3, caspase-8 and elevation of Bcl-2 and tyrosine hydroxylase immunoexpression in OT-treated rats compared to saline group. Our findings suggest that oxytocin may have cytoprotective and restorative effects on dopaminergic neurons against rotenone-induced injury. The underlying mechanism may be associated with the inhibition of apoptotic pathways.  相似文献   
2.
In Parkinson's disease (PD), aside from the central lesion, involvement of visceral organs has been proposed as part of the complex clinical picture of the disease. The issue is still poorly understood and relatively unexplored. In this study we used a classic rodent model of nigrostriatal degeneration, induced by the intrastriatal injection of 6-hydroxydopamine (6-OHDA), to investigate whether and how a PD-like central dopaminergic denervation may influence hepatic functions. Rats received an intrastriatal injection of 6-OHDA or saline (sham), and blood, cerebrospinal fluid, liver and brain samples were obtained for up to 8 weeks after surgery. Specimens were analyzed for changes in cytokine and thyroid hormone levels, as well as liver mitochondrial alterations. Hepatic mitochondria isolated from animals bearing extended nigrostriatal lesion displayed increased ROS production, while membrane potential (ΔΨ) and ATP production were significantly decreased. Reduced ATP production correlated with nigral neuronal loss. Thyroid hormone levels were significantly increased in serum of PD rats compared to sham animals while steady expression of selected cytokines was detected in all groups. Hepatic enzyme functions were comparable in all animals. Our study indicates for the first time that in a rodent model of PD, hepatic mitochondria dysfunctions arise as a consequence of nigrostriatal degeneration, and that thyroid hormone represents a key interface in this CNS-liver interaction. Liver plays a fundamental detoxifying function and a better understanding of PD-related hepatic mitochondrial alterations, which might further promote neurodegeneration, may represent an important step for the development of novel therapeutic strategies.  相似文献   
3.
The exact pathogenesis of Parkinson's disease (PD) is still unknown and proper mechanisms that correspond to the disease remain unidentified. It is understood that PD is age-related; as age increases, the chance of onset responds accordingly. Although there are no current means of curing PD, the understanding of reactive oxygen species (ROS) provides significant insight to possible treatments. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neural apoptosis generation in PD. Dopaminergic neurons are severely damaged as a result of the deficiency. Symptoms such as inhibited cognitive ability and loss of smooth motor function are the results of such impairment. The genetic mutations of Parkinson's related proteins such as PINK1 and LRRK2 contribute to mitochondrial dysfunction which precedes ROS formation. Various pathways are inhibited by these mutations, and inevitably causing neural cell damage. Antioxidants are known to negate the damaging effects of free radical overexpression. This paper expands on the specific impact of mitochondrial genetic change and production of free radicals as well as its correlation to the neurodegeneration in Parkinson's disease.  相似文献   
4.
ObjectiveAcupuncture is a commonly used method to provide motor-symptomatic relief for patients with Parkinson s disease (PD). Our objective was to evaluate protective effects of acupuncture treatment and potential underlying mechanisms according to the “gut-brain axis” theory.MethodsWe employed a 6-OHDA-induced PD rat model. The effects of acupuncture on disease development were assessed by behavioural tests and immunohistochistry (IHC). ELISA, qPCR and western blot (WB) were employed to measure inflammatory parameters and Fe metabolism in the substantia nigra (SN), striatum, duodenum and blood, respectively.ResultsOur data show that acupuncture can significantly increase the expression of tyrosine hydroxylase (TH), compared with untreated and madopa treated rats (P < 0.01 and P < 0.05, respectively). Furthermore we could observe significantly decreased levels of pro-inflammatory markers in the duodenum and serum (P < 0.05), reduced deposition of Fe in the substantia nigra (P < 0.05) and but no change in transferrin expression after acupuncture treatment. The mRNA ratio of DMT1/Fpn1 in the SN of acupuncture treated rats (1.1) was comparable to that of the sham group (1.0) which differed both significantly from the untreated and madopa treated groups (P < 0.05). Furthermore, after acupuncture expression of α-synuclein was decreased in the duodenum.ConclusionsAcupuncture can reduce iron accumulation in the SN and protect the loss of dopamine neurons by promoting balanced expression of the iron importer DMT1 and the iron exporter Fpn1. Furthermore CNS iron homeostasis may be affected by reduced systemic and intestinal inflammation.  相似文献   
5.
6.
Sumoylation is critical for DJ-1 to repress p53 transcriptional activity   总被引:2,自引:0,他引:2  
Fan J  Ren H  Fei E  Jia N  Ying Z  Jiang P  Wu M  Wang G 《FEBS letters》2008,582(7):1151-1156
  相似文献   
7.
Multiple system atrophy (MSA) is a fatal, adult-onset neurodegenerative disorder that has no cure and very limited treatment options. MSA is characterized by deposition of fibrillar α-synuclein (α-syn) in glial cytoplasmic inclusions in oligodendrocytes. Similar to other synucleinopathies, α-syn self-assembly is thought to be a key pathologic event and a prominent target for disease modification in MSA. Molecular tweezers are broad-spectrum nanochaperones that prevent formation of toxic protein assemblies and enhance their clearance. The current lead compound, CLR01, has been shown to inhibit α-syn aggregation but has not yet been tested in the context of MSA. To fill this gap, here, we conducted a proof-of-concept study to assess the efficacy of CLR01 in remodeling MSA-like α-syn pathology in the PLP-α-syn mouse model of MSA. Six-month-old mice received intracerebroventricular CLR01 (0.3 or 1 mg/kg per day) or vehicle for 32 days. Open-field test revealed a significant, dose-dependent amelioration of an anxiety-like phenotype. Subsequently, immunohistochemical and biochemical analyses showed dose-dependent reduction of pathological and seeding-competent forms of α-syn, which correlated with the behavioral phenotype. CLR01 treatment also promoted dopaminergic neuron survival in the substantia nigra. To our knowledge, this is the first demonstration of an agent that reduces formation of putative high-molecular-weight oligomers and seeding-competent α-syn in a mouse model of MSA, supporting the view that these species are key to the neurodegenerative process and its cell-to-cell progression in MSA. Our study suggests that CLR01 is an attractive therapeutic candidate for disease modification in MSA and related synucleinopathies, supporting further preclinical development.  相似文献   
8.
9.
Antidepressant treatments, including those that increase serotonin (5-HT) neurotransmission, require several weeks or months until the onset of the therapeutic effect in depressed patients. The negative feedback on 5-HT transmission exhibited by the 5-HT1A and 5-HT1B autoreceptors has been postulated as a possible delaying factor. The aim of the present study was to assess the effect of the acute and subchronic treatment with pindolol, a 5-HT1A/1B, β1 and β2 adrenoceptor antagonist, on 5-HT synthesis, one of the key parameters of 5-HT neurotransmission. Male Sprague–Dawley (SPD) rats (180–220 g) were treated with pindolol or an adequate volume of saline, administered either acutely (15 mg/kg i.p.; SPD-AC-SAL, SPD-AC-TR) or subchronically (15 mg/kg day i.p. for 7 days; SPD-SUBCHR-SAL, SPD-SUBCHR-TR). Thirty minutes following the single i.p. injection (acute experiment) or at the 8th day following the commencement of the subchronic treatment (subchronic experiment), 5-HT synthesis was measured using α-[14C]methyl-l-tryptophan autoradiography. The analysis of variance (ANOVA), followed by the Benjamini–Hochberg correction for multiple comparisons, revealed: (1) a significant increase of 5-HT synthesis in the SPD-AC-TR rats, relative to the SPD-AC-SAL rats in all brain regions examined except the substantia nigra – pars reticularis, dorsal subiculum, inferior olive, raphe magnus and raphe obscurus and (2) a significant increase of 5-HT synthesis in the SPD-SUBCHR-TR rats, relative to the SPD-SUBCHR-SAL rats in all brain regions except the median raphe, hypothalamus and raphe pontine. On the basis of these results, we hypothesized that the antagonism of the 5-HT1A/1B receptors prevents the negative feedback mediated by these receptors on 5-HT synthesis, resulting in a persistent increase of 5-HT synthesis. The results accord with clinical reports on the utility of pindolol in the augmentation of antidepressant treatment.  相似文献   
10.
1. Dopaminergic neurons in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) of the ventral mesencephalon play an important role in the regulation of the parallel basal ganglia loops. 2. We have raised affinity-purified polyclonal rabbit antibodies specific for all four members of the Kir3 family of inwardly rectifying potassium channels (Kir3.1–Kir3.4) to investigate the distribution of the channel proteins in the dopaminergic neurons of the rat mesencephalon at light and electron microscopic level. In addition, immunocytochemical double labeling with tyrosine hydroxylase (TH), a marker of dopaminergic neurons, were performed. 3. All Kir3 channels were present in this region. However, the individual proteins showed differential cellular and subcellular distributions. 4. Kir3.1 immunoreactivity was found in SNc fibers and some neurons of the substantia nigra pars reticulata (SNr). Few Kir3.3-positive neurons were found in the SNc. However, a strong Kir3.3 signal was identified in the SNr neuropil. Weak Kir3.4 staining was detected in neuronal somata as well as in dendritic fibers of both parts of the SN. 5. In the VTA, Kir3.1, Kir3.3, and Kir3.4 showed only weak staining of neuropil structures. The distribution of the Kir3.2 channel protein was especially striking with strong labeling in the SNc and in the lateral but not central VTA. 6. Our results suggest that the heterogeneously distributed Kir3.2 channel proteins could help to discriminate the dopaminergic neurons of VTA and SNc.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号