首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   6篇
  国内免费   3篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2015年   3篇
  2014年   6篇
  2013年   11篇
  2012年   7篇
  2011年   8篇
  2010年   7篇
  2009年   4篇
  2008年   7篇
  2007年   3篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1992年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1971年   1篇
排序方式: 共有97条查询结果,搜索用时 31 毫秒
1.
The pigment of substantia nigra human brain has been extracted by a mild procedure consisting of washes with phosphate buffer, methanol and incubation with SDS-proteinase. Pyrolisis gas chromatography mass spectrometry infrared spectrometry, termogravimetric analysis and elemental analysis were the techniques used for the chemical characterization. An indole moiety bound to a sulfur containing amino acid and to palmitic acid were the main aspects found in the structure. The presence of a 7% inorganic component was observed. This probably contains Fe, Cu, Zn and Cr which are also relevant, for the formation and the role of melanin in substantia nigra neurons. The fatty acid moiety is chemically bound to the indole structure as it was not eliminated by repeated methanol washing. The same situation occurs for the sulfur containing gropu. Considering these data and the most abundant molecules present in substantia nigra the precursor of neuromelanin seems to be a cysteinyl-cethecol, to which is then bound a palmityl group.  相似文献   
2.
Migration of cercariae of the diplostomatid trematode, Ornithodiplostomum ptychocheilus, to the brain of the fathead minnow, Pimephales promelas, takes place via directed, nonrandom movement. Penetration of the fish epidermis is rapid and is essentially complete by 2 hr postinfection. Migration to the central nervous system occurs almost exclusively via the general body musculature and connective tissue, although a few cercariae gain direct access to the nervous system via the eyes. Cercariae enter either the neural canal and spinal cord, or the brain via the spinal or cranial nerves and their associated foramina, although cercariae appear to remain in (on) these peripheral nerves for only a short time. Cercariae associated with cranial nerves continue to the brain. Those becoming associated with spinal nerves travel up the neural canal and (or) spinal cord to the brain. Data suggest that most arrive at the brain via the neural canal and spinal cord. Within the brain, most developing metacercariae (neascus-type) occur in the optic lobes and cerebellum. Whether this is “selective localization” or merely the result of the larger space afforded by these brain regions could not be determined.  相似文献   
3.
This microreview focuses on the nucleophilic ring‐opening of azetidiniums presenting various substitution patterns at C2, C3, and C4. In most cases, the nucleophilic ring‐opening occurred in a stereoselective and regioselective fashion producing functionalized linear amines. Experimental selectivities associated with Density Functional Theory (DFT) calculations have allowed a better understanding of the parameters governing the regioselectivities.  相似文献   
4.
Voltage-dependent anion channel (VDAC) is a porin known by its role in metabolite transport across mitochondria and participation in apoptotic processes. Although traditionally accepted to be located within mitochondrial outer membrane, some data has also reported its presence at the plasma membrane level where it seems to participate in regulation of normal redox homeostasis and apoptosis. Here, exposure of septal SN56 and hippocampal HT22 cells to specific anti-VDAC antibodies prior to amyloid beta (Aβ) peptide was observed to prevent neurotoxicity. In these cell lines, we identified a VDAC form associated with the plasma membrane that seems to be particularly abundant in caveolae. The two membrane-related isoforms of estrogen receptor α (mERα) (80 and 67 kDa), known in SN56 cells to participate in estrogen-induced neuroprotection against Aβ injury, were also observed to be present in caveolae. Interestingly, we demonstrated for the first time that both VDAC and mERα interact at the plasma membrane of these neurons as well as in microsomal fractions of the corresponding murine septal and hippocampal tissues. These proteins were also shown to associate with caveolin-1, thereby corroborating their presence in caveolar microdomains. Taken together, these results suggest that VDAC-mERα association at the plasma membrane level may participate in the modulation of Aβ-induced cell death.  相似文献   
5.
Guanine nucleotide exchange factors (GEFs) are essential for small G proteins to activate their downstream signaling pathways, which are involved in morphogenesis, cell adhesion, and migration. Mutants of Gef26, a PDZ-GEF (PDZ domain-containing guanine nucleotide exchange factor) in Drosophila, exhibit strong defects in wings, eyes, and the reproductive and nervous systems. However, the precise roles of Gef26 in development remain unclear. In the present study, we analyzed the role of Gef26 in synaptic development and function. We identified significant decreases in bouton number and branch length at larval neuromuscular junctions (NMJs) in Gef26 mutants, and these defects were fully rescued by restoring Gef26 expression, indicating that Gef26 plays an important role in NMJ morphogenesis. In addition to the observed defects in NMJ morphology, electrophysiological analyses revealed functional defects at NMJs, and locomotor deficiency appeared in Gef26 mutant larvae. Furthermore, Gef26 regulated NMJ morphogenesis by regulating the level of synaptic Fasciclin II (FasII), a well-studied cell adhesion molecule that functions in NMJ development and remodeling. Finally, our data demonstrate that Gef26-specific small G protein Rap1 worked downstream of Gef26 to regulate the level of FasII at NMJs, possibly through a βPS integrin-mediated signaling pathway. Taken together, our findings define a novel role of Gef26 in regulating NMJ development and function.  相似文献   
6.
7.
Release of glial glutamine (GLN) to the extracellular fluid (ECF), mainly mediated by the bidirectional system N transporter SN1, was studied in vivo in hyperammonemic rat brain, using (15)N-nuclear magnetic resonance (NMR) to monitor intracellular [5-(15)N]GLN and microdialysis/gradient (1)H-(15)N heteronuclear single-quantum correlation NMR to analyse extracellular [5-(15)N]GLN. GLN(ECF) was elevated to 2.4 +/- 0.2 mm after 4.5 h of intravenous ammonium acetate infusion. The [GLN(i)]/[GLN(ECF)] ratio (i = intracellular) was 9.6 +/- 0.9, compared with 17-20 in normal brain. GLN(ECF) then decreased substantially at t = 4.9 +/- 0.1 h. Comparison of the time-courses of intra- and extra-cellular [5-(15)N]GLN strongly suggested that the observed decrease reflects partial suppression of glial GLN release to ECF. Suppression also followed elevation of GLN(ECF) to 1.9 mM, resulting in a [GLN](i)/[GLN(ECF)] ratio of 8.4, upon perfusion of alpha-(methylamino)isobutyrate which inhibits neuronal uptake of GLN(ECF) mediated by sodium-coupled amino acid transporter (SAT). The results provide first evidence for bidirectional operation of SN1 in vivo, and clarify the effect of transmembrane GLN gradient on glial GLN release at physiological Na(+) gradient. Implications of the results for SN1 as an additional regulatory site in the glutamine/glutamate cycle and utility of this approach for examining the role of GLN in an experimental model of fulminant hepatic failure are discussed.  相似文献   
8.
9.
The fugu SN4TDR protein belongs to an evolutionarily conserved family, consisting of four repeat staphylococcal nuclease-like domains (SN1-SN4) at the N-terminus followed by Tudor and SN-like domains (TSN). Sequence analysis showed that the C-terminal TSN domain is composed of a complete SN-like domain interdigitated with a Tudor domain. In despite of low level of sequence identities, five SN-like domains have a few conserved amino acids that may play essential roles in the function of the protein. Computer modeling and secondary structural prediction of the SN-like domains revealed the presence of similar structural features of β1-β2-β3-α1-β4-β5-α2-α3, which provides a structural basis for oligonucleotides binding. The loop region L for binding sites between β3 and α1 of SN-like domains are different from human p100, implying the divergence in the structures of binding sites. These results indicate that fugu SN4TDR may bind methylated ligands and/or oligonucleotides through its distant domains.  相似文献   
10.
Kinetics of glial glutamine (GLN) transport to the extracellular fluid (ECF) and the mechanism of GLN(ECF) transport into the neuron--crucial pathways in the glutamine-glutamate cycle--were studied in vivo in mildly hyperammonemic rat brain, by NMR and microdialysis to monitor intra- and extracellular GLN. The minimum rate of glial GLN efflux, determined from the rate of GLN(ECF) increase during perfusion of alpha-(methylamino)isobutyrate (MeAIB), which inhibits neuronal GLN(ECF) uptake by sodium-coupled amino-acid transporter (SAT), was 2.88 +/- 0.22 micromol/g/h at steady-state brain [GLN] of 8.5 +/- 0.8 micromol/g. Our previous study showed that the rate of glutamine synthesis under identical experimental conditions was 3.3 +/- 0.3 micromol/g/h. At steady-state glial [GLN], this is equal to its efflux rate to the ECF. Comparison of the two rates suggests that SAT mediates at least 87 +/- 8% (= 2.88/3.3 x 100%) of neuronal GLN(ECF) uptake. While MeAIB induced > 2-fold elevation of GLN(ECF), no sustained elevation was observed during perfusion of the selective inhibitor of LAT, 2-amino-bicyclo[1,1,2]heptane-2-carboxylic acid (BCH), or of d-threonine, a putative selective inhibitor of ASCT2-mediated GLN uptake. The results strongly suggest that SAT is the predominant mediator of neuronal GLN(ECF) uptake in adult rat brain in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号