首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  国内免费   3篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   3篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2000年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
Receptor‐like kinases (RLKs) represent the largest group of cell surface receptors in plants. The monophyletic leucine‐rich repeat (LRR)‐RLK subfamily II is considered to contain the somatic embryogenesis receptor kinases (SERKs) and NSP‐interacting kinases known to be involved in developmental processes and cellular immunity in plants. There are only a few published studies on the phylogenetics of LRR‐RLKII; unfortunately these suffer from poor taxon/gene sampling. Hence, it is not clear how many and what main clades this family contains, let alone what structure–function relationships exist. We used 1342 protein sequences annotated as ‘SERK’ and ‘SERK‐like’ plus related sequences in order to estimate phylogeny within the LRR‐RLKII clade, using the nematode protein kinase Pelle as an outgroup. We reconstruct five main clades (LRR‐RLKII 1–5), in each of which the main pattern of land plant relationships re‐occurs, confirming previous hypotheses that duplication events happened in this gene subfamily prior to divergence among land plant lineages. We show that domain structures and intron–exon boundaries within the five clades are well conserved in evolution. Furthermore, phylogenetic patterns based on the separate LRR and kinase parts of LRR‐RLKs are incongruent: whereas the LRR part supports a LRR‐RLKII 2/3 sister group relationship, the kinase part supports clades 1/2. We infer that the kinase part includes few ‘radical’ amino acid changes compared with the LRR part. Finally, our results confirm that amino acids involved in each LRR‐RLKII–receptor complex interaction are located at N‐capping residues, and that the short amino acid motifs of this interaction domain are highly conserved throughout evolution within the five LRR‐RLKII clades.  相似文献   
2.
Little is known about the genes expressed during grapevine somatic embryogenesis. Both groups of Somatic Embryogenesis Receptor Kinase (SERK) and Leafy Cotyledon (LEC and L1L) genes seem to play key roles during somatic embryogenesis in various plant species. Therefore, we identified and analysed the sequences of VvSERK and VvL1L (Leafy cotyledon1-Like) genes. The deduced amino acid sequences of VvSERK1, VvSERK2 and VvSERK3 are very similar to that of registered SERK proteins, with highest homologies for the kinase domain in the C-terminal region. The amino acid sequence of VvL1L presents all the domains that are characteristic for LEC1 and L1L proteins, particularly, the 16 amino acid residues that serve as signature of the B-domain. Phylogenetic analysis distinguishes members of subclass LEC1 and subclass L1L, and VvL1L is closely related to L1L proteins. Using semi-quantitative RT-PCR, we studied gene expression of VvSERK1, VvSERK2, VvSERK3 and VvL1L in calli and somatic embryos obtained from anther culture of Vitis vinifera L. cv Chardonnay. Expression of VvSERK2 is relatively stable during in vitro culture. In contrast, VvSERK1, VvSERK3 and VvL1L are expressed more 4 to 6 weeks after transfer of the calli onto embryo induction medium, before the visible appearance of embryos on the calli as seen by environmental scanning electron microscopy. Later on (8 weeks after transfer) VvSERK1 expression is maintained in the embryogenic calli and VvSERK3 in the embryos, whereas VvL1L expression is very low. All together, these data suggest the involvement of VvSERK and VvL1L genes in grapevine somatic embryogenesis. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Paul Schellenbaum and Alban Jacques contributed equally to this work.  相似文献   
3.
The Arabidopsis thaliana somatic embryogenesis receptor‐like kinase (SERK) family consists of five leucine‐rich repeat receptor‐like kinases (LRR‐RLKs) with diverse functions such as brassinosteroid insensitive 1 (BRI1)‐mediated brassinosteroid perception, development and innate immunity. The autophosphorylation activity of the kinase domains of the five SERK proteins was compared and the phosphorylated residues were identified by LC‐MS/MS. Differences in autophosphorylation that ranged from high activity of SERK1, intermediate activities for SERK2 and SERK3 to low activity for SERK5 were noted. In the SERK1 kinase the C‐terminally located residue Ser‐562 controls full autophosphorylation activity. Activation loop phosphorylation, including that of residue Thr‐462 previously shown to be required for SERK1 kinase activity, was not affected. In vivo SERK1 phosphorylation was induced by brassinosteroids. Immunoprecipitation of CFP‐tagged SERK1 from plant extracts followed by MS/MS identified Ser‐303, Thr‐337, Thr‐459, Thr‐462, Thr‐463, Thr‐468, and Ser‐612 or Thr‐613 or Tyr‐614 as in vivo phosphorylation sites of SERK1. Transphosphorylation of SERK1 by the kinase domain of the main brassinosteroid receptor BRI1 occurred only on Ser‐299 and Thr‐462. This suggests both intra‐ and intermolecular control of SERK1 kinase activity. Conversely, BRI1 was transphosphorylated by the kinase domain of SERK1 on Ser‐887. BRI1 kinase activity was not required for interaction with the SERK1 receptor in a pull down assay.  相似文献   
4.
Generating a new variety of plant with erect-leaf is a critical strategy to improve rice grain yield, as plants with this trait can be dense-planted. The erect-leaf is a significant morphological trait partially regulated by Brassinosteroids (BRs) in rice plants. So far, only a few genes can be used for molecular breeding in rice. Here, we identified OsBAK1 as a potential gene to alter rice architecture. Based on rice genome sequences, four closely related homologs of Arabidopsis BAK1 ( AtBAK1 ) gene were amplified. Phylogenetic analysis and suppression of a weak Arabidopsis mutant bri1-5 indicated that OsBAK1 (Os08g0174700) is the closest relative of AtBAK1. Genetic, physiological, and biochemical analyses all suggest that the function of OsBAK1 is conserved with AtBAK1 . Overexpression of a truncated intracellular domain of OsBAK1 , but not the extracellular domain of OsBAK1 , resulted in a dwarfed phenotype, similar to the rice BR-insensitive mutant plants. The expression of OsBAK1 changed important agricultural traits of rice such as plant height, leaf erectness, grain morphologic features, and disease resistance responses. Our results suggested that a new rice variety with erect-leaf and normal reproduction can be generated simply by suppressing the expression level of OsBAK1 . Therefore, OsBAK1 is a potential molecular breeding tool for improving rice grain yield by modifying rice architecture.  相似文献   
5.
6.
7.
A rice gene, OsBISERK1, encoding a protein belonging to SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) type of leucine-rich repeat receptor-like kinases (LRR-RLKs) was identified. The OsBISERK1 encodes a 624 aa protein with high level of identity to known plant SERKs. OsBISERK1 contains a hydrophobic signal peptide, a leucine zipper, and five leucine-rich repeat motifs in the extracellular domain; the cytoplasmic region carries a proline-rich region and a single transmembrane domain, as well as a conserved intracellular serine/threonine protein kinase domain. OsBISERK1 has a low level of basal expression in leaf tissue. However, expression of OsBISERK1 was induced by treatment with benzothiadiazole (BTH), which is capable of inducing disease resistance in rice, and also up-regulated after inoculation with Magnaporthe grisea in BTH-treated rice seedlings and during incompatible interaction between a blast-resistant rice genotype and M. grisea. The results suggest that OsBISERK1 may be involved in disease resistance responses in rice.  相似文献   
8.
SERK基因家族的研究进展   总被引:4,自引:0,他引:4  
林庆光  崔百明  彭明 《遗传》2007,29(6):681-687
体细胞胚发生相关类受体蛋白激酶(SERK)基因相继地在胡萝卜、拟南芥、水稻等多种植物中克隆和表达, 并被证实是植物界中广泛存在的结构保守基因家族。SERK基因不仅在胚性组织中表达, 还在非胚性组织中表达, 参与了植物胚胎发育、雄性发育、病害防御和信号传导等活动。  相似文献   
9.
Leucine-rich repeat-receptor-like proteins (LRR-RLPs) and LRR-receptor-like kinases (LRR-RLKs) trigger immune signalling to promote plant resistance against pathogens. LRR-RLPs lack an intracellular kinase domain, and several of these receptors have been shown to constitutively interact with the LRR-RLK Suppressor of BIR1-1/EVERSHED (SOBIR1/EVR) to form signalling-competent receptor complexes. Ligand perception by LRR-RLPs initiates recruitment of the co-receptor BRI1-Associated Kinase 1/Somatic Embryogenesis Receptor Kinase 3 (BAK1/SERK3) to the LRR-RLP/SOBIR1 complex, thereby activating LRR-RLP-mediated immunity. We employed phosphorylation analysis of in planta-produced proteins, live cell imaging, gene silencing and co-immunoprecipitation to investigate the roles of SOBIR1 and BAK1 in immune signalling. We show that Arabidopsis thaliana (At) SOBIR1, which constitutively activates immune responses when overexpressed in planta, is highly phosphorylated. Moreover, in addition to the kinase activity of SOBIR1 itself, kinase-active BAK1 is essential for AtSOBIR1-induced constitutive immunity and for the phosphorylation of AtSOBIR1. Furthermore, the defence response triggered by the tomato LRR-RLP Cf-4 on perception of Avr4 from the extracellular pathogenic fungus Cladosporium fulvum is dependent on kinase-active BAK1. We argue that, in addition to the trans-autophosphorylation of SOBIR1, it is likely that SOBIR1 and BAK1 transphosphorylate, and thereby activate the receptor complex. The signalling-competent cell surface receptor complex subsequently activates downstream cytoplasmic signalling partners to initiate RLP-mediated immunity.  相似文献   
10.
It has previously been shown that the nucleotide sequences of the Agrobacterium rhizogenes rolC locus and the selective marker nptII developed mutations during the long-term cultivation of transgenic cell cultures of Panax ginseng. In the present report, we analyzed the nucleotide sequences of selected plant gene families in the 20-year-old P. ginseng 1c cell culture and in leaves of cultivated P. ginseng plants. We sequenced the Actin genes, which are a family of house-keeping genes; the phenylalanine ammonia-lyase (PAL) and dammarenediol synthase genes (DDS), which actively participate in the biosynthesis of ginsenosides; and the somatic embryogenesis receptor kinase (SERK) genes, which control plant development. We demonstrate that the plant genes also developed mutations during long-term cultivation. The highest level of nucleotide substitution was detected in the sequences of the SERK genes (2.00 ± 0.11 nt per 1000 nt), and the level was significantly higher when compared with the cultivated P. ginseng plant. Interestingly, while the diversity of Actin genes was similar in the P. ginseng cell culture and the cultivated plants, the diversity of the DDS and SERK genes was less in the 20-year-old cell culture than in the cultivated plants. In this work, we detail the level of nucleotide substitutions in different plant genes during the long-term culture of plant cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号