首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2017年   1篇
  2013年   3篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
Second harmonic generation (SHG) multiphoton imaging can visualize fibrillar collagen in tissues. SHG has previously shown that fibrillar collagen is altered in various types of cancer. In the present study, in vivo high resolution SHG multi‐photon tomography in living mice was used to study the relationship between cancer cells and intratumor collagen fibrils. Using green fluorescent protein (GFP) to visualize cancer cells and SHG to image collagen, we demonstrated that collagen fibrils provide a scaffold for cancer cells to align themselves and acquire optimal shape. These results suggest a new paradigm for a stromal element of tumors: their role in maintaining anchorage and shape of cancer cells that may enable them to proliferate. J. Cell. Biochem. 114: 99–102, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
2.
3.
Increasing evidence demonstrates that target‐based agents are active only in molecularly selected populations of patients. Therefore, the identification of predictive biomarkers has become mandatory to improve the clinical development of these novel drugs. Mutations of the epidermal growth factor receptor (EGFR) or rearrangements of the ALK gene in non‐small‐cell lung cancer, and BRAF mutations in melanoma are clear examples of driver mutations and predictive biomarkers of response to treatment with specific inhibitors. Predictive biomarkers might also identify subgroups of patients that are not likely to respond to specific drugs, as shown for KRAS mutations and anti‐EGFR monoclonal antibodies in colorectal carcinoma. The discovery of novel driver molecular alterations and the availability of drugs capable to selectively block such oncogenic mechanisms are leading to a rapid increase in the number of putative biomarkers that need to be assessed in each single patient. In this respect, two different approaches are being developed to introduce a comprehensive molecular characterization in clinical practice: high throughput genotyping platforms, which allow the detection of recognized genetic aberrations in clinical samples, and next generation sequencing that can provide information on all the different types of cancer‐causing alterations. The introduction of these techniques in clinical practice will increase the possibility to identify molecular targets in each individual patient, and will also allow to follow the molecular evolution of the disease during the treatment. By using these approaches, the development of personalized medicine for patients with cancer will finally become possible. J. Cell. Biochem. 114: 514–524, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号