首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   0篇
  2022年   1篇
  2021年   12篇
  2020年   15篇
  2019年   5篇
  2018年   10篇
  2017年   15篇
  2016年   5篇
  2015年   5篇
  2014年   3篇
  2013年   3篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
1.
AimThis study reports a single-institutional experience treating liver metastases with stereotactic body radiation therapy (SBRT).Materials and methods107 patients with 169 lesions were assessed to determine factors predictive for local control, radiographic response, and overall survival (OS). Machine learning techniques, univariate analysis, and the Kaplan-Meier method were utilized.ResultsPatients were treated with a relatively low median dose of 30 Gy in 3 fractions. Fractions were generally delivered once weekly. Median biologically effective dose (BED) was 60 Gy, and the median gross tumor volume (GTV) was 12.16 cc. Median follow-up was 7.36 months. 1-year local control was 75% via the Kaplan-Meier method. On follow-up imaging, 43%, 40%, and 17% of lesions were decreased, stable, and increased in size, respectively. 1-year OS was 46% and varied by primary tumor, with median OS of 34.3, 25.1, 12.5, and 4.6 months for ovarian, breast, colorectal, and lung primary tumors, respectively. Breast and ovarian primary patients had better OS (p < 0.0001), and lung primary patients had worse OS (p = 0.032). Higher BED values, the number of hepatic lesions, and larger GTV were not predictive of local control, radiographic response, or OS. 21% of patients suffered from treatment toxicity, but no grade ≥3 toxicity was reported.ConclusionRelatively low-dose SBRT for liver metastases demonstrated efficacy and minimal toxicity, even for patients with large tumors or multiple lesions. This approach may be useful for patients in whom higher-dose therapy is contraindicated or associated with high risk for toxicity. OS depends largely on the primary tumor.  相似文献   
2.
The aim of this study was to evaluate the dosimetric effect of continuous motion monitoring based localization (Calypso, Varian Medical Systems), gating and intrafraction motion correction in prostate SBRT. Delivered doses were modelled by reconstructing motion inclusive dose distributions for different localization strategies. Actually delivered dose (strategy A) utilized initial Calypso localization, CBCT and additional pre-treatment motion correction by kV-imaging and Calypso, and gating during the irradiation. The effect of gating was investigated by simulating non-gated treatments (strategy B). Additionally, non-gated and single image-guided (CBCT) localization was simulated (strategy C). A total of 308 fractions from 22 patients were reconstructed. The dosimetric effect was evaluated by comparing motion inclusive target and risk organ dose-volume parameters to planned values. Motion induced dose deficits were seen mainly in PTV and CTV to PTV margin regions, whereas CTV dose deficits were small in all strategies: mean ± SD difference in CTVD99% was –0.3 ± 0.4%, −0.4 ± 0.6% and –0.7 ± 1.2% in strategies A, B and C, respectively. Largest dose deficits were seen in individual fractions for strategy C (maximum dose reductions were −29.0% and –7.1% for PTVD95% and CTVD99%, respectively). The benefit of gating was minor, if additional motion correction was applied immediately prior to irradiation. Continuous motion monitoring based localization and motion correction ensured the target coverage and minimized the OAR exposure for every fraction and is recommended to use in prostate SBRT. The study is part of clinical trial NCT02319239.  相似文献   
3.

Aim/background

To evaluate how the use of volumetric-modulated arc therapy (VMAT) with RapidArc® can improve treatment delivery efficiency based on the analysis of the beam-on times and monitor units (MU) needed to deliver therapy for multiple clinical applications in a large patient population.

Materials and methods

A total of 898 treatment courses were delivered in 745 patients treated from October 2008 to March 2013 using RapidArc® treatment plans generated in Eclipse™ TPS. All patients were treated with curative or palliative intent using different techniques including conventional fractionation (83%) and radiosurgery or SBRT (17%), depending on the clinical indications. Treatment delivery was evaluated based on measured beam-on time and recorded MU values delivered on a Varian Trilogy™ linear accelerator.

Results

For conventional fractionation treatments using RapidArc®, the delivery times ranged from 38 s to 4 min and 40 s (average 2 min and 6 s). For radiosurgical treatments the delivery times ranged from 1 min and 42 s to 9 min and 22 s (average 4 min and 4 s). The average number of MU per Gy was 301 for the entire group, with 285 for the conventional group and 317 for the radiosurgical group.

Conclusions

In this study with a large heterogeneous population, treatments using RapidArc® were delivered with substantially less beam-on time and fewer MUs than conventional fractionation. This was highly advantageous, increasing flexibility of the scheduling allowing treatment of radiosurgery patients during the regular daily work schedule. Additionally, reduction of leakage radiation dose was achieved.  相似文献   
4.
AimTo investigate tumour motion tracking uncertainties in the CyberKnife Synchrony system with single fiducial marker in liver tumours.BackgroundIn the fiducial-based CyberKnife real-time tumour motion tracking system, multiple fiducial markers are generally used to enable translation and rotation corrections during tracking. However, sometimes a single fiducial marker is employed when rotation corrections are not estimated during treatment.Materials and methodsData were analysed for 32 patients with liver tumours where one fiducial marker was implanted. Four-dimensional computed tomography (CT) scans were performed to determine the internal target volume (ITV). Before the first treatment fraction, the CT scans were repeated and the marker migration was determined. Log files generated by the Synchrony system were obtained after each treatment and the correlation model errors were calculated. Intra-fractional spine rotations were examined on the spine alignment images before and after each treatment.ResultsThe mean (standard deviation) ITV margin was 4.1 (2.3) mm, which correlated weakly with the distance between the fiducial marker and the tumour. The mean migration distance of the marker was 1.5 (0.7) mm. The overall mean correlation model error was 1.03 (0.37) mm in the radial direction. The overall mean spine rotations were 0.27° (0.31), 0.25° (0.22), and 0.23° (0.26) for roll, pitch, and yaw, respectively. The treatment time was moderately associated with the correlation model errors and weakly related to spine rotation in the roll and yaw planes.ConclusionsMore caution and an additional safety margins are required when tracking a single fiducial marker.  相似文献   
5.
BackgroundStereotactic body radiation therapy (SBRT) as a form of noninvasive treatment that is becoming increasingly used to manage cancers with adrenal gland metastases. There is a paucity of data on safety and efficacy of this modality. The aim of the study was to evaluate the safety and efficacy of adrenal gland SBRT in oligometastatic and oligoprogressive disease.Materials and methodsIn this retrospective study, we performed a single-institution analysis of 26 adrenal lesions from 23 patients with oligometastatic or oligoprogressive disease treated from 2013 to 2019 with the goal of achieving durable local control. Palliative cases were excluded. Radiation dosimetry data was collected. Kaplan Meier product estimator and Cox proportional hazards regression analysis were used for statistical analysis.ResultsThe median dose was 36 Gy in 3 fractions (range: 24–50 Gy and 3–6 fractions) with a median biologically effective dose (BED10) of 72 (range: 40–100). 1-year local control rate was 80% and median local control was not achieved due to a low number of failures. 1- and 2-year overall survival rates were 66% and 32%. Toxicity was mild with only one case of grade 2 nausea and no grade 3–5 toxicity. Higher neutrophil to lymphocyte ratio was associated with worse overall survival and a trend toward worse progression-free survival. In addition, worse performance status and lower BED10 were associated with worse survival. No such association could be shown for primary tumor location, histology, size or stage.ConclusionAdrenal SBRT for oligometastatic or oligoprogressive disease is a safe and effective form of treatment.  相似文献   
6.
BackgroundIn the current study we evaluated 68Ga PSMA PET/ CT to measure local control of bone metastasis in oligometastatic prostate cancer patients treated with SBRT.Materials and methodsAfter the institutional review board approval, a retrospective review of medical records of consecutive prostate cancer patients treated between 2014 and 2018 was conducted. Only medical records of patients that were treated with SBRT for bone metastasis and had pre-and post-SBRT 68Ga PSMA PET/CT scans were included in our study. Data extracted from the medical files included patient-related (age), disease-related (Gleason score, site of metastasis), and treatment-related factors and outcomes.ResultsDuring the study period, a total of 12 patients (15 lesions) were included, with a median age of 73 years. The median follow-up was 26.5 months (range 13–45 months). Median time of 68Ga PSMA PET/ CT follow up was 17.0 months (range 3–39 months). The median pre-treatment PSA was 2 ng/mL (range 0.56–44 ng/mL) vs. post treatment PSA nadir of 0.01 ng/mL (0.01–4.32) with a median time to nadir of 7 months (range, 2–12). Local control was 93% during the follow up period and there was correlation with PS MA avidity on PE T. None patients developed recurrences in the treated bone. None of the patients had grade 3 or more toxicities during follow-up.ConclusionsSBRT is a highly effective and safe method for treatment of prostate cancer bone metastases. More studies are required to determine if SBRT provides greater clinical benefit than standard fractionation for oligometastatic prostate cancer patients. 68Ga PSMA PET/CT should be further investigated for delineation and follow-up.  相似文献   
7.
PurposeTo use Discrete Cosine Transform to include tumor motion variations on ITV definition of SBRT patients.MethodsData from 66 patients was collected. 2D planar fluoroscopy images (FI) were available for 54 patients. Daily CBCT projections (CBCTp) from 29 patients were employed to measure interfraction amplitude variability. Systematic amplitude variations were obtained from 17 patients with data from both FI and CBCTp.Tumor motion curves obtained from FI were characterized with a Cosine model (CM), based on cosine functions to the power of 2, 4 or 6, and DCT. Performance of both models was evaluated by means of R2 coefficient and by comparing their results on Internal Target Volume (ITV) margins against those calculated from original tumor motion curves.Amplitude variations from CBCTp, as well as estimations of baseline shift variations were added to the DCT model to account for their effect on ITV margins.ResultsDCT replicated tumor motion curves with a mean R2 values for all patients of 0.86, 0.91 and 0.96 for the lateral (LAT), anterior-posterior (AP) and cranio-caudal (CC) directions respectively. CM yielded worst results, with R2 values of 0.64, 0.61 and 0.74 in the three directions.Interfraction amplitude variation increased ITV margins by a 9%, while baseline shift variability implied a 40% and 80–100% increase for normalized values of baseline shift of 0.2 and 0.4 respectively.ConclusionsProbability distribution functions of tumor positions can be successfully characterized with DCT. This permits to include tumor motion variablilities obtained from patient population into patient specific ITVs.  相似文献   
8.
Modern radiotherapy machines with refinements in planning software and image-guidance apparatuses have made stereotactic body radiotherapy (SBRT) more widely available as an effective tool in the management of spine metastases. In conventional palliative radiotherapy, the aim has traditionally been pain relief and short-term local control. In contrast, SBRT aims to deliver an ablative dose to enhance local control, with a smaller number of fractions while sparing the organs at risk (OAR), especially the spinal cord. Recently, trials have asserted the role of spine SBRT as an effective modality for durable local control, in addition to achieving pain relief. The quality of evidence for spine SBRT data is maturing, while prospective published trials on re-irradiation SBRT in spine remain sparse. The purpose of the present case report is to share the challenges faced while salvaging a dorsal spine metastasis and ablating a new right adrenal metastatic lesion in proximity of the transplanted liver.  相似文献   
9.
Stereotactic body radiotherapy (SBRT) is rapidly becoming an alternative to surgery for the treatment of early-stage non-small cell lung cancer patients. Lung SBRT is administered in a hypo-fractionated, conformal manner, delivering high doses to the target. To avoid normal-tissue toxicity, it is crucial to limit the exposure of nearby healthy organs-at-risk (OAR).Current image-guided radiotherapy strategies for lung SBRT are mostly based on X-ray imaging modalities. Although still in its infancy, magnetic resonance imaging (MRI) guidance for lung SBRT is not exposure-limited and MRI promises to improve crucial soft-tissue contrast. Looking beyond anatomical imaging, functional MRI is expected to inform treatment decisions and adaptations in the future.This review summarises and discusses how MRI could be advantageous to the different links of the radiotherapy treatment chain for lung SBRT: diagnosis and staging, tumour and OAR delineation, treatment planning, and inter- or intrafractional motion management. Special emphasis is placed on a new generation of hybrid MRI treatment devices and their potential for real-time adaptive radiotherapy.  相似文献   
10.
This survey is performed to update knowledge about methods and trends in lung cancer radiotherapy. A significant development has been noticed in radiotherapeutic techniques, but also in the identification of clinical prognostic factors. The improvement in the therapeutic line includes: application of the four-dimensional computer tomography (4DCT), taking advantage of positron emission tomography (PET-CT), designing of new computational algorithms, allowing more precise irradiation planning, development of treatment precision verification systems and introducing IMRT techniques in chest radiotherapy. The treatment outcomes have improved with high dose radiotherapy, but other fractionation alternations have been investigated as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号