首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   882篇
  免费   184篇
  国内免费   39篇
  2024年   14篇
  2023年   44篇
  2022年   69篇
  2021年   67篇
  2020年   44篇
  2019年   63篇
  2018年   41篇
  2017年   54篇
  2016年   35篇
  2015年   50篇
  2014年   60篇
  2013年   83篇
  2012年   35篇
  2011年   36篇
  2010年   27篇
  2009年   31篇
  2008年   35篇
  2007年   19篇
  2006年   24篇
  2005年   16篇
  2004年   22篇
  2003年   20篇
  2002年   10篇
  2001年   13篇
  2000年   12篇
  1999年   21篇
  1998年   21篇
  1997年   13篇
  1996年   3篇
  1995年   15篇
  1994年   14篇
  1993年   6篇
  1992年   27篇
  1991年   10篇
  1990年   9篇
  1989年   14篇
  1988年   9篇
  1987年   5篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有1105条查询结果,搜索用时 15 毫秒
1.
Here, we seek to determine how compliantly suspended loads could affect the dynamic stability of legged locomotion. We theoretically model the dynamic stability of a human carrying a load using a coupled spring-mass-damper model and an actuated spring-loaded inverted pendulum model, as these models have demonstrated the ability to correctly predict other aspects of locomotion with a load in prior work, such as body forces and energetic cost. We report that minimizing the load suspension natural frequency and damping ratio significantly reduces the stability of the load mass but may slightly improve the body stability of locomotion when compared to a rigidly attached load. These results imply that a highly-compliant load suspension could help stabilize body motion during human, animal, or robot load carriage, but at the cost of a more awkward (less stable) load.  相似文献   
2.
Changing stride frequency may influence oxygen uptake and heart rate during running as a function of running economy and central command. This study investigated the influence of stride frequency manipulation on thermoregulatory responses during endurance running. Seven healthy endurance runners ran on a treadmill at a velocity of 15 km/h for 60 min in a controlled environmental chamber (ambient temperature 27 °C and relative humidity 50%), and stride frequency was manipulated. Stride frequency was intermittently manipulated by increasing and decreasing frequency by 10% from the pre-determined preferred frequency. These periods of increase or decrease were separated by free frequency running in the order of free stride frequency, stride frequency manipulation (increase or decrease), free stride frequency, and stride frequency manipulation (increase or decrease) for 15 min each. The increased and decreased stride frequencies were 110% and 91% of the free running frequency, respectively (196±6, 162±5, and 178±5 steps/min, respectively, P<0.01). Compared to the control, stride frequency manipulation did not affect rectal temperature, heart rate, or the rate of perceived exhaustion during running. Whole-body sweat loss increased significantly when stride frequency was manipulated (1.48±0.11 and 1.57±0.11 kg for control and manipulated stride frequencies, respectively, P<0.05), but stride frequency had a small effect on sweat loss overall (Cohen's d=0.31). A higher mean skin temperature was also observed under mixed frequency conditions compared to that in the control (P<0.05). While the precise mechanisms underlying these changes remain unknown (e.g. running economy or central command), our results suggest that manipulation of stride frequency does not have a large effect on sweat loss or other physiological variables, but does increase mean skin temperature during endurance running.  相似文献   
3.
The TGF-β1-Smad pathway is a well-known negative regulator of muscle growth; however, its potential role in resistance training-induced muscle hypertrophy is not clear. The present study proposed to determine whether and how this pathway may be involved in resistance training-induced muscle hypertrophy. Skeletal muscle samples were collected from the control, trained (RT), control + SB431542 (CITGF), and trained + SB431542 (RTITGF) animals following 3, 5, and 8 weeks of resistance training. Inhibition of the TGF-β1-Smad pathway by SB431542 augmented muscle satellite cells activation, upregulated Akt/mTOR/S6K1 pathway, and attenuated FOXO1 and FOXO3a expression in the CITGF group (all p < .01), thereby causing significant muscle hypertrophy in animals from the CITGF. Resistance training significantly decreased muscle TGF-β1 expression and Smad3 (P-Smad3S423/425) phosphorylation at COOH-terminal residues, augmented Smad2 (P-Smad2-LS245/250/255) and Smad3 (P-Smad3-LSer208) phosphorylation levels at linker sites (all p < .01), and led to a muscle hypertrophy which was unaffected by SB431542, suggesting that the TGF-β1-Smad signaling pathway is involved in resistance training-induced muscle hypertrophy. The effects of inhibiting the TGF-β1-Smad signaling pathway were not additive to the resistance training effects on FOXO1 and FOXO3a expression, muscle satellite cells activation, and the Akt/mTOR/S6K1 pathway. Resistance training effect of satellite cell differentiation was independent of the TGF-β1-Smad signaling pathway. These results suggested that the effect of the TGF-β1-Smad signaling pathway on resistance training-induced muscle hypertrophy can be attributed mainly to its diminished inhibitory effects on satellite cell activation and protein synthesis. Suppressed P-Smad3S423/425 and enhanced P-Smad2-LS245/250/255 and P-Smad3-LSer208 are the molecular mechanisms that link the TGF-β1-Smad signaling pathway to resistance training-induced muscle hypertrophy.  相似文献   
4.
From a research perspective, detailed knowledge about stride length (SL) is important for coaches, clinicians and researchers because together with stride rate it determines the speed of locomotion. Moreover, individual SL vectors represent the integrated output of different biomechanical determinants and as such provide valuable insight into the control of running gait. In recent years, several studies have tried to estimate SL using body-mounted inertial measurement units (IMUs) and have reported promising results. However, many studies have used systems based on multiple sensors or have only focused on estimating SL for walking. Here we test the concurrent validity of a single foot-mounted, 9-degree of freedom IMU to estimate SL for running. We employed a running-specific, Kalman filter based zero-velocity update (ZUPT) algorithm to calculate individual SL vectors with the IMU and compared the results to SLs that were simultaneously recorded by a 6-camera 3D motion capture system. The results showed that the analytical procedures were able to successfully identify all strides that were recorded by the camera system and that excellent levels of absolute agreement (ICC(3,1) = 0.955) existed between the two methods. The findings demonstrate that individual SL vectors can be accurately estimated with a single foot-mounted IMU when running in a controlled laboratory setting.  相似文献   
5.
The awareness of the importance of plant biodiversity has been considerably raised in both developed and developing countries over the last decade. Some of the debate has not been helpful in fostering collaboration or progress towards a more rational support network. The paper attempts to identify and categorize existing efforts in operation in a wide range of institutions and bodies ranging from essentially environmentally orientated to crop-based organizations. Current funding and training initiatives are discussed.  相似文献   
6.
B. Statzner  T. F. Holm 《Oecologia》1989,78(2):145-157
Summary Using Laser Doppler Anemometry we measured current velocities in the median plane around dead lotic macroinvertebrates in a flume which reproduced natural near bottom hydraulics. We investigated specimens of the gastropods Ancylus, Acroloxus, and Potamopyrgus, the amphipod Gammarus, and the larval caddisflies Anabolia, Micrasema, and Silo of various size, various alignment to the flow or which were otherwise manipulated in order to clarify certain questions of adaptation of shape or case building style to flow, or the effects of flow on field distribution patterns. The steepest velocity gradients close to the animals were found near areas of their bodies protruding furthest into the flow. In such regions the rates of potential diffusive exchange processes, the potential corrasion (abrasion through suspended solids), and, for larger specimens, the lift forces (directed towards the water surface) must be highest. Posterior of these areas growing boundary layers formed above those species whose upper contour was approximately parallel to the upstream-downstream direction of the flow. All specimens removed momentum from the flow and thus experience a drag force (directed downstream). From the complete data set we derived the following general conclusions about the physical effects of potential morphological adaptations, taking into consideration diffusion through boundary layers, corrasion, lift forces, friction and pressure drag forces: The physical significance of these five factors generally depends on the Reynolds number of an animal and is largely affected by flow separation, which was significantly related to the ratio of body length to height and the slope of the posterior contour. A simultaneous effective morphological adaptation to all five factors is physically impossible and, in addition, would have to change from life at low (e.g. a young, small specimen of a species) to life at high (e.g. a fully grown specimen of the same species) Reynolds number.  相似文献   
7.
Twenty-four women completed a 20-week heavy-resistance weight training program for the lower extremity. Workouts were twice a week and consisted of warm-up exercises followed by three sets each of full squats, vertical leg presses, leg extensions, and leg curls. All exercises were performed to failure using 6-8 RM (repetition maximum). Weight training caused a significant increase in maximal isotonic strength (1 RM) for each exercise. After training, there was a decrease in body fat percentage (p less than 0.05), and an increase in lean body mass (p less than 0.05) with no overall change in thigh girth. Biopsies were obtained before and after training from the superficial portion of the vastus lateralis muscle. Sections were prepared for histological and histochemical examination. Six fiber types (I, IC, IIC, IIA, IIAB, and IIB) were distinguished following routine myofibrillar adenosine triphosphatase histochemistry. Areas were determined for fiber types I, IIA, and IIAB + IIB. The heavy-resistance training resulted in significant hypertrophy of all three groups: I (15%), IIA (45%), and IIAB + IIB (57%). These data are similar to those in men and suggest considerable hypertrophy of all major fiber types is also possible in women if exercise intensity and duration are sufficient. In addition, the training resulted in a significant decrease in the percentage of IIB with a concomitant increase in IIA fibers, suggesting that strength training may lead to fiber conversions.  相似文献   
8.
Effect of high-intensity endurance training on isokinetic muscle power   总被引:1,自引:0,他引:1  
The purpose of this study was to determine the effects of high-intensity endurance training on isokinetic muscle power. Six male students majoring in physical-education participated in high intensity endurance training on a cycle ergometer at 90% of maximal oxygen uptake (VO2max) for 7 weeks. The duration of the daily exercise session was set so that the energy expenditure equalled 42 kJ.kg-1 of lean body mass. Peak knee extension power was measured at six different speeds (30 degrees, 60 degrees, 120 degrees, 180 degrees, 240 degrees, and 300 degrees.s-1) with an isokinetic dynamometer. After training, VO2max increased significantly from mean values of 51.2 ml.kg-1.min-1, SD 6.5 to 56.3 ml.kg-1.min-1, SD 5.3 (P less than 0.05). Isokinetic peak power at the lower test speeds (30 degrees, 60 degrees and 120 degrees.s-1) increased significantly (P less than 0.05). However, no significant differences in muscle peak power were found at the faster velocities of 180 degrees, 240 degrees, and 300 degrees.s-1. The percentage improvement was dependent on the initial muscle peak power of each subject and the training stimulus (intensity of cycle ergometer exercise).  相似文献   
9.
Differences between the effects of training at sea level and at simulated altitude on performance and muscle structural and biochemical properties were investigated in 8 competitive cyclists who trained for 3-4 weeks, 4-5 sessions/week, each session consisting of cycling for 60-90 min continuously and 45-60 min intermittently. Four subjects, the altitude group (AG), trained in a hypobaric chamber (574 torr = 2300 m above sea level), and the other four at sea level (SLG). Before and after training work capacity was tested both at simulated altitude (574 torr) and at sea level, by an incremental cycle ergometer test until exhaustion. Work capacity was expressed as total amount of work performed. Venous blood samples were taken during the tests. Leg muscle biopsies were taken at rest before and after the training period. AG exhibited an increase of 33% in both sea level and altitude performance, while SLG increased 22% at sea level and 14% at altitude. Blood lactate concentration at a given submaximal load at altitude was significantly more reduced by training in AG than SLG. Muscle phosphofructokinase (PFK) activity decreased with training in AG but increased in SLG. All AG subjects showed increases in capillary density. In conclusion, work capacity at altitude was increased more by training at altitude than at sea level. Work capacity at sea level was at least as much improved by altitude as by sea level training. The improved work capacity by training at altitude was paralleled by decreased exercise blood lactate concentration, increased capillarization and decreased glycolytic capacity in leg muscle.  相似文献   
10.
To compare the results obtained by incremental or constant work load exercises in the evaluation of endurance conditioning, a 20-week training programme was performed by 9 healthy human subjects on the bicycle ergometer for 1 h a day, 4 days a week, at 70-80% VO2max. Before and at the end of the training programme, (1) the blood lactate response to a progressive incremental exercise (18 W increments every 2nd min until exhaustion) was used to determine the aerobic and anaerobic thresholds (AeT and AnT respectively). On a different day, (2) blood lactate concentrations were measured during two sessions of constant work load exercises of 20 min duration corresponding to the relative intensities of AeT (1st session) and AnT (2nd session) levels obtained before training. A muscle biopsy was obtained from vastus lateralis at the end of these sessions to determine muscle lactate. AeT and AnT, when expressed as % VO2max, increased with training by 17% (p less than 0.01) and 9% (p less than 0.05) respectively. Constant workload exercise performed at AeT intensity was linked before training (60% VO2max) to a blood lactate steady state (4.8 +/- 1.4 mmol.l-1) whereas, after training, AeT intensity (73% VO2max) led to a blood lactate accumulation of up to 6.6 +/- 1.7 mmol.l-1 without significant modification of muscle lactate (7.6 +/- 3.1 and 8.2 +/- 2.8 mmol.kg-1 wet weight respectively). It is concluded that increase in AeT with training may reflect transient changes linked to lower early blood lactate accumulation during incremental exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号