首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   5篇
  国内免费   1篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   8篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   3篇
  2015年   3篇
  2014年   8篇
  2013年   11篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2009年   3篇
  2008年   7篇
  2007年   6篇
  2006年   11篇
  2005年   8篇
  2004年   7篇
  2003年   6篇
  2002年   2篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
排序方式: 共有162条查询结果,搜索用时 31 毫秒
1.
Ribulosebisphosphate carboxylase/oxygenase (EC 4.1.1.39) (rubisco) must be fully activated in order to catalyze the maximum rates of photosynthesis observed in plants. Activation of the isolated enzyme occurs spontaneously, but conditions required to observe full activation are inconsistent with those known to occur in illuminated chloroplasts. Genetic studies with a nutant of Arabidopsis thaliana incapable of activating rubisco linked two chloroplast polypeptides to the activation process in vivo. Using a reconstituted light activation system, it was possible to demonstrate the participation of a chloroplast protein in rubisco activation. These results indicate that a specific chloroplast enzyme, rubisco activase, catalyzes the activation of rubisco in vivo.  相似文献   
2.
Cholera toxin (CT) stimulated phospholipase activity and caused [3H]arachidonic acid (3H-AA) release in a murine macrophage/monocyte cell line. Pretreatment of cells with dexamethasone, a phospholipase A2 (PLA2) inhibitor, did not affect CT-induced 3H-AA release. In contrast, aspirin, which is an inhibitor of phospholipase C (PLC), blocked CT-induced 3H-AA release and subsequent prostaglandin (PC) synthesis. The inhibitory effect of aspirin was dose dependent, with 4 mM reducing the CT response by approximately 50%. Similarly, inhibition was time dependent, occurring when the drug was added to the culture medium as late as 30 min after CT. Brief exposure (30 min) of the cells to aspirin did not alter their subsequent response to CT, but 3H-AA release from cells exposed to aspirin for 2.5 h was irreversibly inhibited. The data suggested that CT stimulation of AA metabolism may involve increased PLC activity.  相似文献   
3.
Summary The pyrenoid is a protein complex in the chloroplast stroma of eukaryotic algae. After the treatment with mercury chloride, pyrenoids were isolated by sucrose density gradient centrifugation from cell-wall less mutant cells, CW-15, as well as wild type cells, C-9, of unicellular green algaChlamydomonas reinhardtii. Pyrenoids were characterized as a fraction whose protein/chlorophyll ratio was very high, and also examined by Nomarski differential interference microscopy. Most of the components consisted of 55 kDa and 16 kDa polypeptides (11) which were immunologically identified as the large and small subunit of RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) protein, respectively. Some minor polypeptides were also detected. Substantial amount of RuBisCO protein is present as a particulate form in the pyrenoid in addition to the soluble form in algal chloroplast stroma.Abbreviations BPB bromophenol blue - DAB 3,3-diaminobenzidine - DTT dithiothreitol - ELISA enzyme-linked immunosorbent assay - High-CO2 cells cells grown under air enriched with 4% CO2 - Low-CO2 cells cells grown under ordinary air (containing 0.04% CO2) - NP-40 nonionic detergent (Nonidet) P-40 - PAGE polyacrylamide gel electrophoresis - PAP peroxidase-antiperoxidase conjugate - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SDS sodium dodecylsulfate  相似文献   
4.
Summary Antiserum against the Calvin cycle enzyme, ribulose-1,5-bisphosphate carobxylase/oxygenase (RuBisCO), was used in conjunction with colloidal gold to localize RuBisCO in nitrogen-fixing (fix+) and nonfixing (fix–)Plectonema boryanum cells. RuBisCO antiserum consistently labeled the cytoplasm and polyhedral bodies (carboxysomes) in both fix+ and fix– cells. Through morphometry, it was determined that significantly less gold label (indicative of RuBisCO) was present in fix+ cells. This decreased RuBisCO content correlated with a decrease in net photosynthetic oxygen evolution also observed in fix+P. boryanum.Abbreviations RuBisCO Ribulose-1,5-bisphosphate carboxylase/oxygenase - fix+ nitrogen-fixing - fix– nonfixing  相似文献   
5.
6.
The single, basal pyrenoids of Gonium quadratum Pringsheim ex Nozaki and G. pectorale Müller (Goniaceae, Chlorophyta) differed in appearance when vegetative colonies were cultured photoheterotrophically in medium containing sodium acetate. Chloroplasts of G. quadratum had distinct pyrenoids when grown in medium without major carbon compounds. However, the pyrenoids degenerated and were markedly reduced in size when such cells were inoculated into a medium containing 400 mg·L?1 of sodium acetate. No pyrenoids were visible under the light microscope; however, with electron microscopy small pyrenoids and electron-dense bodies were visible within the degenerating chloroplasts, which had only single layers of thylakoid lamellae at the periphery. The chloroplasts subsequently developed distinct pyrenoids and several layers of thylakoid lamellae as the culture aged. In contrast, vegetative cells of G. pectorale always showed distinct pyrenoids when cells were inoculated into medium containing sodium acetate, sodium pyruvic acid, sodium lactate, and/or yeast extract. Therefore, we propose two terms, “unstable pyrenoids” and “stable pyrenoids,” for pyrenoids of G. quadratum and G. pectorale, respectively. Chloroplasts of the colonial green flagellates should thus be examined under various culture conditions in order to determine whether their pyrenoids are unstable or stable when pyrenoids are used as taxonomic indicators. Immunogold electron microscopy showed that the ratios of gold particle density of ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) between pyrenoid matrix and chloroplast stroma in G. quadratum grown in medium with or without sodium acetate were lower than those of G. pectorale. Heavy labeling by anti-RuBisCO was observed in both the electron-dense bodies and pyrenoid matrix of G. quadratum. This is the first electron microscopic demonstration of degeneration and development of both pyrenoids and thylakoid lamellae in the chloroplast as a function of culture condition in green algae.  相似文献   
7.
The enzyme activity of ribulose 1, 5-bisphosphate carboxylase-oxygenase (RuBisCO) and phosphoenolpyruvate carboxylase (PEPC) was measured in four species of marine benthic diatoms isolated from subtidal sediments of Graveline Bayou, Mississippi. Enzyme activities were measured in cultures of Amphora micrometra Giffen, A. tenerrima Aleem and Hustedt, Nitzschia fontifuga Cholnoky, and Nitzschia vermicularis Grunow that were grown at light levels supporting μmax and at light-limiting irradiances. All four species exhibited similar RuBisCO: PEP ratios (range = 1–1.8) at μmax the lowest ratio (0.4) was observed in A. micrometra. Reduced light levels increased PEPC relative to that measured at μmax in two species. Two-dimensional paper chromatography was used to determine the first products of carbon fixation in A. micrometra After a 15 s incorporation period, the first product of photosynthetic carbon fixation was 3-phosphoglycerate even though this alga had a PEPC activity that was three times higher than that of RuBisCO. After 30 s, over 50% of the recovered radioactivity was still in this compound. Stable carbon isotope analyses of a mixture of the four pennate diatoms also suggest the predominant carbon fixation pathway in these benthic diatoms was similar to C3 plants.  相似文献   
8.
9.
In this work, we review the physiological and molecular mechanisms that allow vascular plants to perform photosynthesis in extreme environments, such as deserts, polar and alpine ecosystems. Specifically, we discuss the morpho/anatomical, photochemical and metabolic adaptive processes that enable a positive carbon balance in photosynthetic tissues under extreme temperatures and/or severe water‐limiting conditions in C3 species. Nevertheless, only a few studies have described the in situ functioning of photoprotection in plants from extreme environments, given the intrinsic difficulties of fieldwork in remote places. However, they cover a substantial geographical and functional range, which allowed us to describe some general trends. In general, photoprotection relies on the same mechanisms as those operating in the remaining plant species, ranging from enhanced morphological photoprotection to increased scavenging of oxidative products such as reactive oxygen species. Much less information is available about the main physiological and biochemical drivers of photosynthesis: stomatal conductance (gs), mesophyll conductance (gm) and carbon fixation, mostly driven by RuBisCO carboxylation. Extreme environments shape adaptations in structures, such as cell wall and membrane composition, the concentration and activation state of Calvin–Benson cycle enzymes, and RuBisCO evolution, optimizing kinetic traits to ensure functionality. Altogether, these species display a combination of rearrangements, from the whole‐plant level to the molecular scale, to sustain a positive carbon balance in some of the most hostile environments on Earth.  相似文献   
10.
The photosynthetic CO2 fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) forms dead-end inhibited complexes while binding multiple sugar phosphates, including its substrate ribulose 1,5-bisphosphate. Rubisco can be rescued from this inhibited form by molecular chaperones belonging to the ATPases associated with diverse cellular activities (AAA+ proteins) termed Rubisco activases (Rcas). The mechanism of green-type Rca found in higher plants has proved elusive, in part because until recently higher-plant Rubiscos could not be expressed recombinantly. Identifying the interaction sites between Rubisco and Rca is critical to formulate mechanistic hypotheses. Toward that end here we purify and characterize a suite of 33 Arabidopsis Rubisco mutants for their ability to be activated by Rca. Mutation of 17 surface-exposed large subunit residues did not yield variants that were perturbed in their interaction with Rca. In contrast, we find that Rca activity is highly sensitive to truncations and mutations in the conserved N terminus of the Rubisco large subunit. Large subunits lacking residues 1–4 are functional Rubiscos but cannot be activated. Both T5A and T7A substitutions result in functional carboxylases that are poorly activated by Rca, indicating the side chains of these residues form a critical interaction with the chaperone. Many other AAA+ proteins function by threading macromolecules through a central pore of a disc-shaped hexamer. Our results are consistent with a model in which Rca transiently threads the Rubisco large subunit N terminus through the axial pore of the AAA+ hexamer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号