首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   480篇
  免费   2篇
  2023年   5篇
  2022年   9篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   2篇
  2015年   2篇
  2014年   7篇
  2013年   18篇
  2012年   9篇
  2011年   12篇
  2010年   7篇
  2009年   8篇
  2008年   7篇
  2007年   12篇
  2006年   14篇
  2005年   10篇
  2004年   10篇
  2003年   16篇
  2002年   15篇
  2001年   10篇
  2000年   10篇
  1999年   9篇
  1998年   7篇
  1997年   12篇
  1996年   15篇
  1995年   12篇
  1994年   9篇
  1993年   16篇
  1992年   17篇
  1991年   15篇
  1990年   10篇
  1989年   10篇
  1988年   16篇
  1987年   14篇
  1986年   15篇
  1985年   17篇
  1984年   19篇
  1983年   13篇
  1982年   16篇
  1981年   13篇
  1980年   3篇
  1979年   8篇
  1978年   7篇
  1977年   3篇
  1976年   3篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
排序方式: 共有482条查询结果,搜索用时 15 毫秒
1.
在31只氯醛糖和氨基甲酸乙酯麻醉的猫,观察了选择性激活颈动脉压力和化学感受器对巨细胞旁外侧核(PGL)单位放电的影响。136个PGL自发放电单位中,有84个在激活颈动脉压力感受器(BA)(新福林,1—2μg/kg,iv)和/或激活颈动脉化学感受器(CA)(nicotine 5—20μg,溶于0.25—0.5ml生理盐水中,注入甲状腺动脉)时,放电频率有变化。在这些有反应的单位中,16个仅对CA起反应(11个兴奋、5个抑制);54个以各种组合方式对CA和BA都起反应,其中以CA引起兴奋反应而BA引起抑制反应的占比例最大;14个仅对BA起反应(7个兴奋,7个抑制)。在定位分布上,那些只对CA起反应的单位多位于PGL的腹侧部份;仅对BA起反应的单位则位于对CA起反应单位的较背侧;对BA和CA均起反应的单位介于上述两者之间或在较深区域。这些结果表明,颈动脉区压力和化学感受器活动传入到PGL,并会聚在其中一些神经元上。 在PGL内全部有反应的单位中,68个对激活颈动脉压力感受器起反应,其中兴奋的29个,抑制的39个(P>0.05);70个对激活颈动脉化学感受器起反应,其中48个兴奋,22个抑制(P<0.005)。这些结果提示,BA对PGL神经元引起兴奋和抑制两种效应,而CA则诱发兴奋为主的反应。  相似文献   
2.
周正锋  顾蕴辉 《生理学报》1987,39(2):123-131
本实验用氨基甲酸乙酯麻醉和箭毒化的雄性大鼠,细胞外记录脊髓胸2节段的交感节前神经元(SPN)单位放电,电刺激同侧颈交感干,逆向激活 SPN,以确定所记录的神经元为交感节前神经元。共分析了80个 SPN 单位放电,其中有自发活动和无自发活动的单位各40个。SPN 轴突传导速度为0.59—3.75m/s。实验观察到电刺激同侧延髓头端腹外侧区(Rostralventrolateral medulla:RVL)可兴奋多数有自发活动的 SPN(19/25),并可使少数静止SPN 产生诱发反应(4/23),潜伏期为6—115ms。电刺激对侧 RVL 结果类似:多数自发活动的 SPN(6/9)呈兴奋反应,及少数静止 SPN(3/17)产生诱发反应,潜伏期为11—105ms。表明 RVL 对双侧 SPN 有兴奋性影响。  相似文献   
3.
Summary The calcium sensitivity of exocytosis from electroper-meabilized chromaffin cells is increased by activators of protein kinase C, such as TPA and certain phorbol esters, diacylglycerols, and mezerein. A range of putative inhibitors of protein kinase C block both the phorbol ester-sensitive component of secretion and also the underlying insensitive component. These inhibitors are also shown to inhibit medulla protein kinase C activity in vitro. The extent of secretion is reduced when electropermeabilized cells are exposed to Ca2+ levels much in excess of 50 m. The onset of inhibition is faster than the relatively slow rate of Ca-dependent exocytosis and is insensitive to inhibitors of proteolysis. Adrenal medulla protein kinase C activity is also irreversibly inhibited by high Ca2+ concentrations. Both the secretory response and the protein kinase C activity in vitro have similar nucleotide and cation specificities. Although these data do not definitely establish an involvement of protein kinase C in exocytosis, none argue against it.Deceased  相似文献   
4.
1.  The actions of GABA on three classes of visual interneurons in crayfish, Procambarus clarkii, medulla externa are examined. The effect of GABA on the visual response is compared to GABA's action on agonist-elicited responses purported to mediate the visual response.
2.  GABA produces a shunting type of inhibition in medullary amacrine cells which is associated with a small depolarization (Figs. 2, 3), a large increase in input conductance (Gn) and a reversal potential close to rest (Fig. 4). GABA is a potent antagonist to the depolarizing action of acetylcholine (ACh) (Fig. 5).
3.  GABA depolarizes dimming fibers (Fig. 2), and the response is mediated by an increase in Gn (Fig. 6). GABA antagonizes the light-elicited IPSP and the hyperpolarizing action of ACh (Fig. 7).
4.  Sustaining fibers (SF) do not appear to have GABA receptors but GABA inhibits the excitatory visual input pathway to the SFs (Fig. 8). Conversely, the GABA antagonist, bicuculline, potentiates the SF light response (Fig. 9).
5.  GABA has at least three different modes of antagonist action in the medulla: i) Increased conductance and depolarization in dimming fibers and medullary amacrine neurons; ii) Decreased chloride conductance in tangential cells; and iii) An inhibitory action on the visual pathway which drives SFs.
  相似文献   
5.
We characterized a group of acidic proteins of bovine chromaffin granules with an antiserum raised against a protein described by Rosa and Zanini [Eur. J. Cell Biol. 31, 94-98 (1983)] in pituitary gland. In adrenal medulla the proteins reacting with this antiserum are confined to chromaffin granules. Their largest component has a Mr of 86,000 and a pI of 5.0. In addition six proteins of lower molecular weight are recognized by this antiserum. In a cell-free system only one protein is synthesized that can be precipitated with this antiserum. The properties of these proteins are very similar to those of the previously described chromogranins A and B; however, there is no immunological cross-reaction between these protein groups. We suggest this third group of acidic proteins of chromaffin granules be named chromogranins C.  相似文献   
6.
In the present study we examined the interaction of opiates with the delta and mu opioid binding sites in the bovine adrenal medulla. [3H][D-Ala2, D-Leu5]-enkephalin ( [3H]DADLE) in the presence of saturating concentrations of morphiceptin was used to analyze delta site interactions, whereas either [3H]DADLE in the presence of saturation concentrations of [D-Ser2, Leu5]-enkephalin-Thr6 (DSLET) or [3H][D-Ala2, Me-Phe4, Gly5-ol]-enkephalin ( [3H]DAGO) was used for the determination of mu sites. Both binding sites were found to interact stereoselectively with opiates. The binding was affected differentially by proteolytic enzymes (trypsin, alpha-chymotrypsin, pepsin), N-ethylmaleimide, and A2-phospholipase. Kinetic and equilibrium binding studies revealed that in each case radiolabeled opiates interact with one class of binding sites, following simple second-order bimolecular kinetics. Competition for binding by opiates and opioid peptides confirmed the delta and mu selectivity of these sites. Monovalent (Na+, Li+, K+) and divalent (Mg2+, Mn2+, Ca2+) ions interacted differentially with these two binding sites: In general, monovalent cations affected preferentially the apparent number of binding sites, whereas divalent ions modified the equilibrium dissociation constant. Furthermore, positive or negative cooperativity and an apparent heterogeneity of binding sites were detected under some ionic conditions.  相似文献   
7.
The soluble proteins of bovine chromaffin granules can be resolved into about 40 proteins by two-dimensional electrophoresis. Use of several antisera enabled us to characterize most of these proteins with the immune replica technique. An antiserum against dopamine beta-hydroxylase reacted with one protein of Mr 75,000. Met-enkephalin antisera labeled eight proteins of Mr 23,000-14,000. A new method was developed to obtain highly purified chromogranin A for immunization. The antiserum reacted with chromogranin A and several smaller proteins of similar pI. This specific antiserum did not react with a second family of hitherto undescribed proteins, which we propose to call chromogranins B. An antiserum against these proteins was raised. It labeled several proteins ranging in Mr from 100,000 to 24,000 and focusing at pH 5.2. Subcellular fractionation established that chromogranins B are specifically localized in chromaffin granules of several species. They are secreted from the adrenal medulla during cholinergic stimulation. We conclude that apart from dopamine beta-hydroxylase chromaffin granules contain three families of immunologically unrelated proteins.  相似文献   
8.
Summary The pre- and postnatal development of the adrenal medulla was examined in the rat by immunohistochemistry and by assay of catecholamines. Immunohistochemistry involved the use of antibodies to noradrenaline (NA), adrenaline (A) and the biosynthesizing enzymes dopamine -hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT). Adrenal glands were obtained from animals from the 16th day of gestation to the 7th postnatal day at daily intervals, and at the 14th postnatal day, and from adult rats. Tissues were fixed in ice-cold, 4% paraformaldehyde, buffered at pH 7.3. Cryostat sections (7 m) were stained with the indirect immunofluorescence technique. Adrenals from the same developmental stages were assayed for the presence of DA (dopamine), NA and A by ion-pair reversed-phase liquid chromatography with electrochemical detection.In adult adrenals the majority of the medullary cells (approximately 80%) were highly immunoreactive to A and moderately immunoreactive to NA. They also showed immunoreactivity to both DBH and PNMT, i.e., they are synthesizing and storing A. The remaining cell clusters were only stained by antibodies to DBH and NA (NA-synthesizing and -storing cells). These findings correlate well with the relative concentrations of A and NA as determined by assay.Three developmental phases could be distinguished. In the first phase, the 16th and 17th prenatal day, medullary cells were only immunoreactive to DBH and NA, and only very small amounts of A as compared to NA were found. During the second period, from the 18th prenatal day to 2 or 3 days after birth, all medullary cells were immunoreactive to DBH, NA, PNMT and A, and during this phase the adrenaline concentration increased daily and became the predominant amine on the 20th day of gestation. Adrenaline represented 75% of total catecholamine on the 1st to 3rd day after birth. The third phase started at the 2nd or 3rd postnatal day and was characterized by the presence of an increasing number of medullary cells solely immunoreactive to DBH and NA, hence synthesizing and storing NA. The remaining cells were immunoreactive to DBH, NA, PNMT and A. Postnatally, the relative concentration of A continued to rise reaching 79% by the 4th postnatal day. These results indicate that initially the adrenal medullary cells are synthesizing and storing almost exclusively NA. Probably, adrenaline synthesis begins at the 16th–17th day of gestation and the cells are then capable of synthesizing and storing both NA and A (mixed cell type) with A synthesis and storage rapidly becoming predominant. Finally, after birth, separate NA-synthesizing and -storing cell types are formed and the so-called A cells stored predominantly (probably >90%) adrenaline with a small proportion of noradrenaline.In the medullary blastema and in the sympathetic ganglia of prenatal animals two cell types, only immunoreactive to DBH and NA, were observed. Presumably, these cells represent developing sympathetic neurons and extra-adrenal chromaffin cells; the latter cell type occasionally invades the adrenal gland. Thus, prospective medullary cells are able to synthesize and store NA before they have made contact with the cortical blastema but A-synthesizing cells are found only within the adrenal gland.Low but significant amounts of DA were found in the adrenal before birth and during the first two postnatal weeks but in the adult animal this accounted for less than 0.1% of total catecholamine.Preliminary reports of this study were made to the American Association of Anatomists (Anat. Rec. 196; 196A, 1980), the Dutch Anatomical Society (Acta Morphol. Neerl. Scand. 19; 330, 1981, and the XIIIth Acta Endocrinologica Congress (Acta Endocrinol. 97: Suppl. 243, 285, 1981)  相似文献   
9.
A glycoprotein (s-GP III) was isolated from the soluble lysate of chromaffin granules by chromatography with immunoaffinity and lectin columns. An identical protein (m-GP III) was shown to be present in the granule membranes. The apparent molecular weight of these glycoproteins as determined by the electrophoresis system of Laemmli (1970) was 43,000 under reducing conditions. In the absence of mercaptoethanol they aggregated to dimers. Antisera were raised against both the soluble and the membrane-bound forms of this glycoprotein. With these antisera GP III was further characterized: Immunoreplicas were obtained after two-dimensional electrophoresis of soluble and membrane-bound proteins of chromaffin granules. GP III was identified as a protein with a rather broad pI (4.6-5.3), indicating microheterogeneity. As shown by subcellular fractionation, m-GP III is specifically confined to chromaffin granules. GP III can therefore be used as a marker for the membranes of these organelles. The soluble form is secreted from adrenal medulla during stimulation with carbamylcholine chloride. An immunologically identical antigen was detected in adeno- and neurohypophysis. The physiological function of GP III is still unknown. It does not demonstrate any of the enzymatic activities so far known to occur in chromaffin granules.  相似文献   
10.
Summary Chromaffin granules from bovine adrenal medullary chromaffin cells have been found to contain small vesicular structures bounded by unit membranes. Detection of these intragranular vesicles within intact cells requires the use of quick-freezing methods. The intragranular vesicles are labile to fixation by aldehydes which explains why they have not been described in intact cells until now. They are found in approximately 60% of the dense-core chromaffin granules in cells and 85% of isolated granules. They are usually clustered in groups of one to as many as five between the core and the inner surface of the granule membrane. The intragranular vesicles are independent vesicles in that they do not appear as simple invaginations of the granule membrane in either serial thin-section or freeze-etch views. Furthermore, they are released from the cell along with granule contents during nicotine-induced secretion of catecholamines. The structural heterogeneity provided by the intragranular vesicles may be related to the functional heterogeneity of granule contents observed in many recent biochemical studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号