首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   2篇
  国内免费   1篇
  2023年   2篇
  2022年   5篇
  2021年   4篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2015年   6篇
  2014年   29篇
  2013年   19篇
  2012年   20篇
  2011年   22篇
  2010年   16篇
  2009年   6篇
  2008年   7篇
  2007年   6篇
  2006年   8篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  1999年   2篇
  1997年   1篇
  1993年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
1.
2.
《Biochimie》2013,95(8):1511-1524
This review summarizes available data concerning intradomain structures (IS) such as functionally important amino acid residues, short linear motifs, conserved or disordered regions, peptide repeats, broadly occurring secondary structures or folds, etc. IS form structural features (units or elements) necessary for interactions with proteins or non-peptidic ligands, enzyme reactions and some structural properties of proteins. These features have often been related to a single structural level (e.g. primary structure) mostly requiring certain structural context of other levels (e.g. secondary structures or supersecondary folds) as follows also from some examples reported or demonstrated here. In addition, we deal with some functionally important dynamic properties of IS (e.g. flexibility and different forms of accessibility), and more special dynamic changes of IS during enzyme reactions and allosteric regulation. Selected notes concern also some experimental methods, still more necessary tools of bioinformatic processing and clinically interesting relationships.  相似文献   
3.
4.
Mitogen-activated protein kinase (MAPK) activation depends on a linear binding motif found in all MAPK kinases (MKK). In addition, the PB1 (Phox and Bem1) domain of MKK5 is required for extracellular signal regulated kinase 5 (ERK5) activation. We present the crystal structure of ERK5 in complex with an MKK5 construct comprised of the PB1 domain and the linear binding motif. We show that ERK5 has distinct protein-protein interaction surfaces compared with ERK2, which is the closest ERK5 paralog. The two MAPKs have characteristically different physiological functions and their distinct protein-protein interaction surface topography enables them to bind different sets of activators and substrates. Structural and biochemical characterization revealed that the MKK5 PB1 domain cooperates with the MAPK binding linear motif to achieve substrate specific binding, and it also enables co-recruitment of the upstream activating enzyme and the downstream substrate into one signaling competent complex. Studies on present day MAPKs and MKKs hint on the way protein kinase networks may evolve. In particular, they suggest how paralogous enzymes with similar catalytic properties could acquire novel signaling roles by merely changing the way they make physical links to other proteins.  相似文献   
5.
BackgroundExpression level of EMX2 plays an important role in the development of nervous system and cancers. CNE2.04, a conserved enhancer downstream of emx2, drives fluorescent protein expression in the similar pattern of emx2.MethodsCNE2.04 truncated or motif-mutated transgenic reporter plasmids were constructed and injected into the zebrafish fertilized egg with Tol2 mRNA at the unicellular stage of zebrafish eggs. The green fluorescence expression patterns were observed at 24, 48, and 72 hpf, and the fluorescence rates of different tissues were counted at 48 hpf.ResultsCompared to CNE2.04, CNE2.04-R400 had comparable enhancer activity, while the tissue specificity of CNE2.04-L400 was obviously changed. Motif CCCCTC mutation obviously changed the enhancer activity, while motif CCGCTC mutations also changed it.ConclusionDue to their correlation with tissue specificity, CNE2.04-R400 is associated with the tissue-specificity of CNE2.04, and motif CCCCTC plays an important role in the enhancer activity of CNE2.04.  相似文献   
6.
蛋白质是生物体内最必需也是最通用的大分子,对它们功能的认识对于科学领域和农业领域的发展有着至关重要的作用。随着后基因组时代的发展,NCBI数据库中迅速涌现出大量不明结构与功能的蛋白质序列,这些蛋白质序列甚至一跃成了研究的热点。近几十年来蛋白质功能预测的方法不断被完善。由最初的仅基于蛋白质序列或3D结构信息的方法衍生出更多的基于序列相似性、基于结构基序、基于相互作用网络等新方法,这些新型方法采用新的算法、新的研究思路和技术手段,力求得到准确性与普遍性并存,能够被广泛应用的蛋白质功能预测方法。本文综述了近年来蛋白质功能预测的方法,并将这些研究方法分类归纳,各自阐明了每类方法的优缺点。  相似文献   
7.
8.
The SR protein kinase in yeast, Sky1p, phosphorylates yeast SR-like protein, Npl3p, at a single serine residue located at its C terminus. We report here the X-ray crystal structure of Sky1p bound to a substrate peptide and ADP. Surprisingly, an Npl3p-derived substrate peptide occupies a groove 20 A away from the kinase active site. In vitro studies support the substrate-docking role of this groove. Mutagenesis and binding studies reveal that multiple degenerate short peptide motifs located within the RGG domain of Npl3p serve as the substrate docking motifs. However, a single docking motif is sufficient for its stable interaction with the kinase. Methylation of the docking motifs abolishes kinase binding and phosphorylation of Npl3p. Remarkably, removal of the docking groove in the kinase or the docking motifs of the substrate does not reduce the overall catalytic efficiency of the phosphorylation reaction in any significant manner. We suggest that docking interaction between Sky1p and Npl3p is essential for substrate recruitment and binding specificity.  相似文献   
9.
RGS14 contains distinct binding sites for both active (GTP-bound) and inactive (GDP-bound) forms of Gα subunits. The N-terminal regulator of G protein signaling (RGS) domain binds active Gαi/o-GTP, whereas the C-terminal G protein regulatory (GPR) motif binds inactive Gαi1/3-GDP. The molecular basis for how RGS14 binds different activation states of Gα proteins to integrate G protein signaling is unknown. Here we explored the intramolecular communication between the GPR motif and the RGS domain upon G protein binding and examined whether RGS14 can functionally interact with two distinct forms of Gα subunits simultaneously. Using complementary cellular and biochemical approaches, we demonstrate that RGS14 forms a stable complex with inactive Gαi1-GDP at the plasma membrane and that free cytosolic RGS14 is recruited to the plasma membrane by activated Gαo-AlF4. Bioluminescence resonance energy transfer studies showed that RGS14 adopts different conformations in live cells when bound to Gα in different activation states. Hydrogen/deuterium exchange mass spectrometry revealed that RGS14 is a very dynamic protein that undergoes allosteric conformational changes when inactive Gαi1-GDP binds the GPR motif. Pure RGS14 forms a ternary complex with Gαo-AlF4 and an AlF4-insensitive mutant (G42R) of Gαi1-GDP, as observed by size exclusion chromatography and differential hydrogen/deuterium exchange. Finally, a preformed RGS14·Gαi1-GDP complex exhibits full capacity to stimulate the GTPase activity of Gαo-GTP, demonstrating that RGS14 can functionally engage two distinct forms of Gα subunits simultaneously. Based on these findings, we propose a working model for how RGS14 integrates multiple G protein signals in host CA2 hippocampal neurons to modulate synaptic plasticity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号