首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2010年   1篇
  2006年   1篇
  2005年   1篇
  2001年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Several vertebrate genes of the Hairy/Enhancer-of-split (HES) family are involved in paraxial mesoderm segmentation and intersomitic boundary establishment/maintenance. Here, we show that the zebrafish hairy-related gene, her6, highly homologous to the mammalian and chicken HES-1 genes, is expressed in the posterior part of each segmented somite and in stripes in the anterior presomitic mesoderm (PSM), and also in a dynamic, segmentally restricted pattern during hindbrain segmentation, with all rhombomeres expressing her6 at different time points and at different levels.  相似文献   
2.
Several vertebrate genes of the Hairy/Enhancer-of-split (HES) family are involved in paraxial mesoderm segmentation and intersomitic boundary establishment/maintenance. Here, we show that the zebrafish hairy-related gene, her6, highly homologous to the mammalian and chicken HES-1 genes, is expressed in the posterior part of each segmented somite and in stripes in the anterior presomitic mesoderm (PSM), and also in a dynamic, segmentally restricted pattern during hindbrain segmentation, with all rhombomeres expressing her6 at different time points and at different levels.  相似文献   
3.
The hindbrain and cranial paraxial mesoderm have been implicated in the induction and patterning of the inner ear, but the precise role of the two tissues in these processes is still not clear. We have addressed these questions using the vitamin-A-deficient (VAD) quail model, in which VAD embryos lack the posterior half of the hindbrain that normally lies next to the inner ear. Using a battery of molecular markers, we show that the anlagen of the inner ear, the otic placode, is induced in VAD embryos in the absence of the posterior hindbrain. By performing grafting and ablation experiments in chick embryos, we also show that cranial paraxial mesoderm which normally lies beneath the presumptive otic placode is necessary for otic placode induction and that paraxial mesoderm from other locations cannot induce the otic placode. Two members of the fibroblast growth factor family, FGF3 and FGF19, continue to be expressed in this mesodermal population in VAD embryos, and these may be responsible for otic placode induction in the absence of the posterior hindbrain. Although the posterior hindbrain is not required for otic placode induction in VAD embryos, the subsequent patterning of the inner ear is severely disrupted. Several regional markers of the inner ear, such as Pax2, EphA4, SOHo1 and Wnt3a, are incorrectly expressed in VAD otocysts, and the sensory patches and vestibulo-acoustic ganglia are either greatly reduced or absent. Exogenous application of retinoic acid prior to 30 h of development is able rescue the VAD phenotype. By performing such rescue experiments before and after 30 h of development, we show that the inner ear defects of VAD embryos correlate with the absence of the posterior hindbrain. These results show that induction and patterning of the inner ear are governed by separate developmental processes that can be experimentally uncoupled from each other.  相似文献   
4.
An unknown chicken gene selected from a published substractive hybridization screen (GenBank Accession No. ; [Christiansen, J.H., Coles, E.G., Robinson, V., Pasini, A., Wilkinson, D.G., 2001. Screening from a subtracted embryonic chick hindbrain cDNA library: identification of genes expressed during hindbrain, midbrain and cranial neural crest development. Mech. Dev. 102, 119-133.]) was deemed of interest because of its dynamic pattern of expression across the forebrain and midbrain regions. A 528bp fragment cloned from early chick embryo cDNA and used for in situ hybridization corresponded to part of the 3' untranslated region of the chicken gene Leucine-rich repeat neuronal protein 1 (Lrrn1). The expression of this gene, mapped in the embryonic chick brain between stages HH10 and HH26, apparently preconfigures the zona limitans thalami site before overt formation of this boundary structure. Apart of colateral expression in the forebrain, midbrain and hindbrain basal plate, the most significant expression of Lrrn1 was found early on across the entire alar plate of midbrain and forebrain (HH10). This unitary domain soon divides at HH14 into a rostral part, across alar secondary prosencephalon and prospective alar prosomere 3 (prethalamus; caudal limit at the prospective zona limitans), and a caudal part in alar prosomere 1 (pretectum) and midbrain. The rostral forebrain domain later downregulates gradually most extratelencephalic signal of Lrrn1, but the rostral shell of zona limitans retains expression longer. Expression in the caudal alar domain also changes by downregulation within its pretectal subdomain. Caudally, the midbrain domain ends at the isthmo-mesencephalic junction throughout the studied period. Embryonic Lrrn1 signal also appears in the somites and in the otic vesicle.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号