首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   4篇
  国内免费   18篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   4篇
  2015年   4篇
  2014年   10篇
  2013年   7篇
  2012年   3篇
  2011年   6篇
  2010年   6篇
  2009年   16篇
  2008年   14篇
  2007年   12篇
  2006年   10篇
  2005年   13篇
  2004年   7篇
  2003年   8篇
  2002年   17篇
  2001年   9篇
  2000年   8篇
  1999年   12篇
  1998年   17篇
  1997年   12篇
  1996年   17篇
  1995年   12篇
  1994年   13篇
  1993年   9篇
  1992年   10篇
  1991年   13篇
  1990年   11篇
  1989年   13篇
  1988年   11篇
  1987年   11篇
  1986年   7篇
  1985年   3篇
  1984年   1篇
排序方式: 共有331条查询结果,搜索用时 15 毫秒
1.
Porin of the outer membrane of Rhodobacter capsulatus St. Louis (ATCC 23782) was isolated and reconstituted into lipid bilayer membranes. The porin was obtained either by the sodium dodecyl sulfate treatment of cell envelopes (SDS-porin) or by saline extraction of whole cells (NaCl-porin). Nanomolar concentrations of both porin preparations resulted in a strong conductance increase of the lipid bilayer membranes by many orders of magnitude. At small protein concentrations the conductance increased in a stepwise fashion, the average single channel conductance being about 0.35 nS in 0.1 M KCl for SDS-porin and NaCl-porin as well. The single channel conductance was a linear function of the specific conductance of the aqueous phase. The results were consistent with the assumption that the porin formed large water-filled transmembrane channels in the membrane. From the average value of the single channel conductance in 0.1 M KCl an effective channel diameter of about 1.5 nm was estimated for both types of porins.Abbreviations EDTA ethylenediamine tetraacetic acid - SDS sodium dodecyl sulfate  相似文献   
2.
The periplasmic dissimilatory nitrate reductase from Rhodobacter capsulatus N22DNAR+ has been purified. It comprises a single type of polypeptide chain with subunit molecular weight 90,000 and does not contain heme. Chlorate is not an alternative substrate. A molybdenum cofactor, of the pterin type found in both nitrate reductases and molybdoenzymes from various sources, is present in nitrate reductase from R. capsulatus at an approximate stoichiometry of 1 molecule per polypeptide chain. This is the first report of the occurrence of the cofactor in a periplasmic enzyme. Trimethylamine-N-oxide reductase activity was fractionated by ion exchange chromatography of periplasmic proteins. The fractionated material was active towards dimethylsulphoxide, chlorate and methionine sulphoxide, but not nitrate. A catalytic polypeptide of molecular weight 46,000 was identified by staining for trimethylamine-N-oxide reductase activity after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. The same polypeptide also stained for dimethylsulphoxide reductase activity which indicates that trimethylamine-N-oxide and dimethylsulphoxide share a common reductase.Abbreviations DMSO dimethylsulphoxide - LDS lithium dodecyl sulphate - MVH reduced methylviologen - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate - TMAO trimethylamine-N-oxide  相似文献   
3.
The phototrophic bacterium Rhodobacter capsulatus E1F1 assimilates ammonia and other forms of reduced nitrogen either through the GS/GOGAT pathway or by the concerted action of l-alanine dehydrogenase and aminotransferases. These routes are light-independent and very responsive to the carbon and nitrogen sources used for cell growth. GS was most active in cells grown on nitrate or l-glutamate as nitrogen sources, whereas it was heavily adenylylated and siginificantly repressed by ammonium, glycine, l-alanine, l-aspartate, l-asparagine and l-glutamine, under which conditions specific aminotransferases were induced. GOGAT activity was kept at constitutive levels in cells grown on l-amino acids as nitrogen sources except on l-glutamine where it was significantly induced during the early phase of growth. In vitro, GOGAT activity was strongly inhibited by l-tyrosine and NADPH. In cells using l-asparagine or l-aspartate as nitrogen source, a concerted induction of l-aspartate aminotransferase and l-asparaginase was observed. Enzyme level enhancements in response to nitrogen source variation involved de novo protein synthesis and strongly correlated with the cell growth phase.Abbreviations ADH l-alanine dehydrogenase - AOAT l-alanine:2-oxoglutarate aminotransferase - Asnase l-asparaginase - GOAT Glycine: oxaloacetate aminotransferase - GOGAT Glutamate synthase - GOT l-aspartate: 2-oxoglutarate aminotransferase - GS Glutamine synthetase - HPLC High-Pressure Liquid Chromatography - MOPS 2-(N-morpholino)propanesulfonic acid - MSX l-methionine-d,l-sulfoximine  相似文献   
4.
Rhodobacter capsulatus strain BK5 possesses a membrane bound respiratory nitrate reductase rather than the periplasmic enzyme found in other strains. The enzyme in strain BK5 is shown to be both functionally and structurally related to the nitrate reductase of Paracoccus denitrificans and Escherichia coli.Abbreviation TMAO trimethylamine-N-oxide  相似文献   
5.
Abstract Nif mutants of Rhodobacter capsulatus carrying mutations either in the nifR4 regulatory gene or in the nifH structural gene both outgrew the wild-type strain B10 in mixed chemostat cultures under conditions favouring nitrogenase-mediated H2 production by the wild-type (ammonia as limiting nutrient, inert argon atmosphere, light as energy source), whereas under aerobic conditions in the dark, or in batch culture, the growth of Nif mutants was not favoured. Nitrogenase-mediated H2 production therefore appears to be detrimental to the growth of R. capsulatus in nitrogen-limited continuous culture, as may also be the case for other nitrogen fixers.  相似文献   
6.
Summary The structural genes (hup) of the H2 uptake hydrogenase of Rhodobacter capsulatus were isolated from a cosmid gene library of R. capsulatus DNA by hybridization with the structural genes of the H2 uptake hydrogenase of Bradyrhizobium japonicum. The R. capsulatus genes were localized on a 3.5 kb HindIII fragment. The fragment, cloned onto plasmid pAC76, restored hydrogenase activity and autotrophic growth of the R. capsulatus mutant JP91, deficient in hydrogenase activity (Hup-). The nucleotide sequence, determined by the dideoxy chain termination method, revealed the presence of two open reading frames. The gene encoding the large subunit of hydrogenase (hupL) was identified from the size of its protein product (68108 dalton) and by alignment with the NH2 amino acid protein sequence determined by Edman degradation. Upstream and separated from the large subunit by only three nucleotides was a gene encoding a 34 256 dalton polypeptide. Its amino acid sequence showed 80% identity with the small subunit of the hydrogenase of B. japonicum. The gene was identified as the structural gene of the small subunit of R. capsulatus hydrogenase (hupS). The R. capsulatus hydrogenase also showed homology, but to a lesser extent, with the hydrogenase of Desulfovibrio baculatus and D. gigas. In the R. capsulatus hydrogenase the Cys residues, (13 in the small subunit and 12 in the large subunit) were not arranged in the typical configuration found in [4Fe–4S] ferredoxins.  相似文献   
7.
Labelling of Rhodobacter capsulatus cells with (32P)Pi in a phototrophic culture results in phosphorylation of a membrane-bound polypeptide identified as the subunit of the LHI antenna complex of the photosynthetic apparatus. Phosphorylation of the same polypeptide was also observed by incubation of chromatophores with (32P)ATP or under conditions of photophosphorylation with ADP and (32P)Pi. The identity of the phosphorylated LHI- subunit was demonstrated by N-terminal protein sequencing of the phosphorylated polypeptide and by failure of labelling in LHI-defective mutants. Pre-aeration of the samples or addition of the oxidant potassium ferrcyanide stimulated the kinase activity whereas the presence of soluble cytoplasmic proteins impaired phosphorylation in an in vitro assay. No effect resulted from addition of reductants to the assay medium. The results indicate the presence of a membrane-bound protein kinase in R. capsulatus that phosphorylates the subunit of the LHI antenna complex under redox control.Abbreviations Pi inorganic phosphate - SDS-PAGE sodium dodecyl-sulfate polyacrylamide gel electrophoresis  相似文献   
8.
Nitrogen assimilation in Rhodobacter capsulatus has been shown to proceed via the coupled action of glutamine synthetase (GS) and glutamate synthase (GOGAT) with no measurable glutamate dehydrogenase (GDH) present. We have recently isolated a novel class of mutants of R. capsulatus strain B100 that lacks a detectable GOGAT activity but is able to grow at wild type rates under nitrogen-fixing conditions. While NH 4 + -supported growth in the mutants was normal under anaerobic/photosynthetic conditions, the growth rate was decreased under aerobic conditions. Ammonium and methylammonium uptake experiments indicated that there was a clear difference in the ammonium assimilatory capabilities in these mutants under aerobic versus anaerobic growth. Regulation of expression of a nifH : : lacZ fusion in these mutants was not impaired. The possible existence of alternative ammonium assimilatory pathways is discussed.  相似文献   
9.
Cells of the purple non-sulphur bacterium Rhodobacter sphaeroides express a high-affinity K+ uptake system when grown in media with low K+ concentrations. Antibodies againts the catalytic KdpB protein or the whole KdpABC complex of Escherichia coli crossreact with a 70.0 kDa R. sphaeroides protein that was expressed only in cells grown in media with low K+ concentrations. In membranes derived from R. sphaeroides cells grown with low K+ concentrations (induced cells), a high ATPase activity could be detected when assayed in Tris-HCl pH 8.0 containing 1 mM MgSO4. This ATPase activity increased upon addition of 1 mM KCl from 166 to 289 mol ATP hydrolysed x min-1 x g protein-1 (1.7-fold stimulation). The K+-stimulated ATPase activity was inhibited approximately 93% by 0.5 mM vanadate but hardly by N,N-dicyclohexylcarbo-diimide (DCCD). These results indicate that the inducible K+-ATPase in R. sphaeroides resembles the Kdp K+-translocating ATPase of Escherichia coli. This Kdp-like transport system is also expressed in R. capsulatus and Rhodospirillum rubrum during growth in media with low K+ concentrations suggesting a wide distribution of this transport system among phototrophic bacteria.Abbreviations electrical potential difference across the cytoplasmic membrane - pH pH difference across the cytoplasmic membrane - BSA bovine serum albumine - PAGE polyacrylamide gel electrophoresis - HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid - PMSF phenyl-methyl-sulfonyl fluoride - DCCD N,N-dicyclohexylcarbodiimide - AIB 2--aminoisobutyric acid - TMG methyl--d-thiogalactopyranoside  相似文献   
10.
From genomic libraries of the purple non-sulfur bacteria Rhodospirillum rubrum Ha and Rhodobacter sphaeroides ATCC 17023 in the broad-host range cosmid pVK100, we cloned a 15- and a 14-kbp HindIII restriction fragment, respectively. Each of these fragments restored the ability to accumulate poly(3-hydroxybutyrate) (PHB), in the PHB-negative mutant Alcaligenes eutrophus PHB-4. These hybrid cosmids also complemented PHB-negative mutants derived from wild-type R. rubrum or R. sphaeroides. Both fragments hybridized with the PHB synthase structural gene of A. eutrophus H16 and conferred the ability to express PHB synthase activity. Only the 15-kbp HindIII fragment from R. rubrum conferred on the mutant PHB-4 the ability to form large PHB granules (length up to 3.5 microns).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号