首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2013年   1篇
  2009年   1篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
A new unicellular red alga, Corynoplastis japonica gen. et sp. nov., is described from Tobishima, Japan. Cells are spherical, 18–33 µm in diameter, pale purple to brownish red and surrounded by a mucilaginous sheath. A single chloroplast with many lobes extends from the cell periphery to the cell center. A peripheral thylakoid is present. A pyrenoid occurs at each innermost chloroplast lobe end and one or two thylakoids are present in the pyrenoid matrix. The nucleus is eccentric to peripheral and Golgi bodies are scattered throughout the cell and associated with endoplasmic reticulum. Cells have a slow random gliding motility. The low molecular weight carbohydrate mannitol is present in the cells. Molecular phylogenetic analysis indicates that this alga is closely related to members of the genus Rhodella. A new order, Dixoniellales, is established for Dixoniella, Neorhodella and Glaucosphaera based on molecular and ultrastructural evidence (Golgi bodies associated only with the nucleus). The redefined order Rhodellales in which Rhodella and Corynoplastis are placed is characterized ultrastructurally by Golgi bodies scattered throughout the cytoplasm and associated with endoplasmic reticulum.  相似文献   
2.
Previous phylogenetic studies of the Rhodophyta have provided a framework for understanding red algal phylogeny, but there still exists the need for a comprehensive analysis using a broad sampling of taxa and sufficient phylogenetic information to clearly define the major lineages. In this study, we determined 48 sequences of the PSI P700 chl a apoprotein A1 (psaA) and rbcL coding regions and established a robust red algal phylogeny to identify the major clades. The tree included most of the lineages of the Bangiophyceae (25 genera, 48 taxa). Seven well‐supported lineages were identified with this analysis with the Cyanidiales having the earliest divergence and being distinct from the remaining taxa; i.e. the Porphyridiales 1–3, Bangiales, Florideophyceae, and Compsopogonales. We also analyzed data sets with fewer taxa but using seven proteins or the DNA sequence from nine genes to resolve inter‐clade relationships. Based on all of these analyses, we propose that the Rhodophyta contains two new subphyla, the Cyanidiophytina with a single class, the Cyanidiophyceae, and the Rhodophytina with six classes, the Bangiophyceae, Compsopogonophyceae, Florideophyceae, Porphyridiophyceae classis nov. (which contains Porphyridium, Flintiella, and Erythrolobus), Rhodellophyceae, and Stylonematophyceae classis nov. (which contains Stylonema, Bangiopsis, Chroodactylon, Chroothece, Purpureofilum, Rhodosorus, Rhodospora, and Rufusia). We also describe a new order, Rhodellales, and a new family, Rhodellaceae (with Rhodella, Dixoniella, and Glaucosphaera).  相似文献   
3.
The mannitol cycle has been verified in a unicellular red alga (Rhodellophyceae) for the first time. All four enzymes involved in the cycle (mannitol-1-phosphate dehydrogenase, Mt1PDH: EC 1.1.1.17; mannitol-1-phosphatase, Mt1Pase: EC 3.1.3.22; mannitol dehydrogenase, MtDH: 1.1.1.67; hexokinase, HK: 2.7.1.1.) were detected and characterized in crude algal extracts from Dixoniella grisea. These enzymes, with the exception of Mt1Pase, were specific to their corresponding substrates and nucleotides. The activities of enzymes in the anabolic pathway (fructose-6-P reduction by Mt1PDH and mannitol-6-P reduction by Mt1Pase) were at least 2- to 4-fold greater than those of the catabolic pathway (mannitol oxidation by MtDH and fructose oxidation by HK). There appears to be, therefore, a net carbon flow in D. grisea towards a high intracellular mannitol pool. The mannitol cycle guarantees a rapid accumulation or degradation of mannitol within algal cells in response to changing salinity in natural habitats. Moreover, the demonstration of the mannitol cycle within the Rhodellophyceae provides evidence that this metabolic pathway is of ancient origin in the red algal lineage.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号