首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.

Aim

The distribution of mesoplankton communities has been poorly studied at global scale, especially from in situ instruments. This study aims to (1) describe the global distribution of mesoplankton communities in relation to their environment and (2) assess the ability of various environmental-based ocean regionalizations to explain the distribution of these communities.

Location

Global ocean, 0–500 m depth.

Time Period

2008–2019.

Major Taxa Studied

Twenty-eight groups of large mesoplanktonic and macroplanktonic organisms, covering Metazoa, Rhizaria and Cyanobacteria.

Methods

From a global data set of 2500 vertical profiles making use of the Underwater Vision Profiler 5 (UVP5), an in situ imaging instrument, we studied the global distribution of large (>600 μm) mesoplanktonic organisms. Among the 6.8 million imaged objects, 330,000 were large zooplanktonic organisms and phytoplankton colonies, the rest consisting of marine snow particles. Multivariate ordination (PCA) and clustering were used to describe patterns in community composition, while comparison with existing regionalizations was performed with regression methods (RDA).

Results

Within the observed size range, epipelagic plankton communities were Trichodesmium-enriched in the intertropical Atlantic, Copepoda-enriched at high latitudes and in upwelling areas, and Rhizaria-enriched in oligotrophic areas. In the mesopelagic layer, Copepoda-enriched communities were also found at high latitudes and in the Atlantic Ocean, while Rhizaria-enriched communities prevailed in the Peruvian upwelling system and a few mixed communities were found elsewhere. The comparison between the distribution of these communities and a set of existing regionalizations of the ocean suggested that the structure of plankton communities described above is mostly driven by basin-level environmental conditions.

Main Conclusions

In both layers, three types of plankton communities emerged and seemed to be mostly driven by regional environmental conditions. This work sheds light on the role not only of metazoans, but also of unexpected large protists and cyanobacteria in structuring large mesoplankton communities.  相似文献   
2.
3.
Relatively well-preserved polycystine Radiolaria are here described from Lower Cambrian (Botomian) strata of the Shashkunar Formation, Altai Mountains in southern Siberia (Russia). These radiolarians display a test formed of a disorderly and three-dimensionally interwoven meshwork of numerous straight and curved bars branching from a five-rayed point-centered spicule located within the inner shell surface. The shell structure allows their assignment to the family Archeoentactiniidae, thus extending the known age range of the family down to the Lower Cambrian. The Botomian age is based essentially on trilobites (Parapagetia-Serrodiscus zone), but also on archaeocyathids identified in earlier publications. The study of the radiolarian-bearing sedimentary sequence confirms the presence of polycystine radiolaria in the external platform environments of Lower Cambrian ecosystems.  相似文献   
4.
ABSTRACT. We have converted the hierarchically organized new higher level classification of eukaryotes with emphasis on the taxonomy of protists proposed by Adl et al. into an interactive and dynamic Java applet. The current version of the applet can be accessed via http://phylogenetics.bioapps.biozentrum.uni-wuerzburg.de/etv . We use the layout from a Degree-of-Interest tree (DOITree) that effectively displays all the taxonomic information as well as the phylogenetic relationships described in the original article by Adl et al. The tree was made using the Prefuse Toolkit for interactive information visualization. All browsers capable of using Java applets will be able to view the tree. The applet is freely available for scientists, teachers, and students.  相似文献   
5.
Kevin Mowbrey 《FEBS letters》2009,583(23):3738-3745
Often considered a defining eukaryotic feature, the Golgi body is one of the most recognizable and functionally integrated cellular organelles. It is therefore surprising that some unicellular eukaryotes do not, at first glance, appear to possess Golgi stacks. Here we review the molecular evolutionary, genomic and cell biological evidence for Golgi bodies in these organisms, with the organelle likely present in some form in all cases. This, along with the overwhelming prevalence of stacked cisternae in most eukaryotes, implies that the ancestral eukaryote possessed a stacked Golgi body, with at least eight independent instances of Golgi unstacking in our cellular history.  相似文献   
6.
A single or double amino acid insertion at the monomer-monomer junction of the universal eukaryotic protein polyubiquitin is unique to Cercozoa and Foraminifera, closely related 'core' phyla in the protozoan infrakingdom Rhizaria. We screened 11 other candidate rhizarians for this insertion: Radiozoa (polycystine and acantharean radiolaria), a 'microheliozoan', and Apusozoa; all lack it, supporting suggestions that Foraminifera are more closely related to Cercozoa than either is to other eukaryotes. The insertion's size was ascertained for 12 additional Cercozoa to help resolve their basal branching order. The earliest branching Cercozoa generally have a single amino acid insertion, like all Foraminifera, but a large derived clade consisting of all Monadofilosa except Metopion, Helk-esimastix, and Cercobodo agilis has two amino acids, suggesting one doubling event and no reversions to a single amino acid. Metromonas and Sainouron, cercozoans of uncertain position, have a double insertion, suggesting that they belong in Monadofilosa. An alternative interpretation, suggested by the higher positions for Metopion and Cercobodo on Bayesian trees compared with most distance trees, cannot be ruled out, i.e. that the second insertion took place earlier, in the ancestral filosan, and was followed by three independent reversions to a single amino acid in Chlorarachnea, Metopion and Cercobodo.  相似文献   
7.
8.
Reconstructing a global phylogeny of eukaryotes is an ongoing challenge of molecular phylogenetics. The availability of genomic data from a broad range of eukaryotic phyla helped in resolving the eukaryotic tree into a topology with a rather small number of large assemblages, but the relationships between these "supergroups" are yet to be confirmed. Rhizaria is the most recently recognized "supergroup," but, in spite of this important position within the tree of life, their representatives are still missing in global phylogenies of eukaryotes. Here, we report the first large-scale analysis of eukaryote phylogeny including data for 2 rhizarian species, the foraminiferan Reticulomyxa filosa and the chlorarachniophyte Bigelowiella natans. Our results confirm the monophyly of Rhizaria (Foraminifera + Cercozoa), with very high bootstrap supports in all analyses. The overall topology of our trees is in agreement with the current view of eukaryote phylogeny with basal division into "unikonts" (Opisthokonts and Ameobozoa) and "bikonts" (Plantae, alveolates, stramenopiles, and excavates). As expected, Rhizaria branch among bikonts; however, their phylogenetic position is uncertain. Depending on the data set and the type of analysis, Rhizaria branch as sister group to either stramenopiles or excavates. Overall, the relationships between the major groups of unicellular bikonts are poorly resolved, despite the use of 85 proteins and the largest taxonomic sampling for this part of the tree available to date. This may be due to an acceleration of evolutionary rates in some bikont phyla or be related to their rapid diversification in the early evolution of eukaryotes.  相似文献   
9.
Decelle J  Suzuki N  Mahé F  de Vargas C  Not F 《Protist》2012,163(3):435-450
Acantharia are ubiquitous and abundant rhizarian protists in the world ocean. The skeleton made of strontium sulphate and the fact that certain harbour microalgal endosymbionts make them key planktonic players for the ecology of marine ecosystems. Based on morphological criteria, the current taxonomy of Acantharia was established by W.T. Schewiakoff in 1926, since when no major revision has been undertaken. Here, we established the first comprehensive molecular phylogeny from single morphologically-identified acantharian cells, isolated from various oceans. Our phylogenetic analyses based on 78 18S rDNA and 107 partial 28S rDNA revealed the existence of 6 main clades, sub-divided into 13 sub-clades. The polyphyletic nature of acantharian families and genera demonstrates the need for revision of the current taxonomy. This molecular phylogeny, which highlights the taxonomic relevance of specific morphological criteria, such as the presence of a shell and the organisation of the central junction, provides a robust phylogenetic framework for future taxonomic emendation. Finally, mapping all the existing environmental sequences available to date from different marine ecosystems onto our reference phylogeny unveiled another 3 clades and improved the understanding of the biogeography and ecology of Acantharia.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号