首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   36篇
  国内免费   25篇
  2024年   1篇
  2023年   23篇
  2022年   21篇
  2021年   31篇
  2020年   17篇
  2019年   17篇
  2018年   11篇
  2017年   14篇
  2016年   9篇
  2015年   21篇
  2014年   19篇
  2013年   24篇
  2012年   14篇
  2011年   16篇
  2010年   10篇
  2009年   12篇
  2008年   21篇
  2007年   17篇
  2006年   12篇
  2005年   8篇
  2004年   11篇
  2003年   7篇
  2002年   8篇
  2001年   9篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1996年   8篇
  1995年   5篇
  1994年   8篇
  1993年   5篇
  1992年   3篇
  1991年   11篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有437条查询结果,搜索用时 15 毫秒
1.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   
2.
Summary In male rats a large number of the postganglionic neurons which innervate the pelvic organs are located in the major pelvic ganglion. In the present study we have identified the location within this ganglion of neurons which project to either of three pelvic organs, the penis, colon or urinary bladder. Two fluorescent retrogradely-transported dyes, Fast Blue and Fluoro-Gold, were used. For most animals one dye was injected into the cavernous space of the penis, the wall of the distal colon or the wall of the urinary bladder. In a small number of animals two organs were injected, each with a different dye. One to six weeks after injection the major pelvic ganglia were fixed in buffered formaldehyde. The distribution of fluorescent dye-labelled cells was observed in whole mounts of complete ganglia and, in most cases, also in small accessory ganglia located between the ureter and the prostate. The studies showed a unique pattern of distribution for each organ-specific group of neurons. Most of the colon neurons are located in the major pelvic ganglion near the entrance of the pelvic nerve, whereas almost all of the penis neurons are near or within the penile nerve. Bladder neurons are relatively evenly distributed throughout the ganglion. These results demonstrate a distinct topographical organization of organ-specific neurons of the major pelvic ganglion of the male rat, a phenomenon which has also been observed in other peripheral ganglia.  相似文献   
3.
Summary Retinopetal neurons were visualised in the telencephalon and diencephalon of an air-breathing teleost fish, Channa punctata, following administration of cobaltous lysine to the optic nerve. The labelled perikarya (n=45–50) were always located on the side contralateral to the optic nerve that had received the neuronal tracer. The rostral-most back-filled cell bodies were located in the nucleus olfactoretinalis at the junction between the olfactory bulb and the telencephalon. In the area ventralis telencephali, two groups of telencephaloretinopetal neurons were identified near the ventral margin of the telencephalon. The rostral hypothalamus exhibited retrogradely labelled cells in three discrete areas of the lateral preoptic area, which was bordered medially by the nucleus praeopticus periventricularis and nucleus praeopticus, and laterally by the lateral forebrain bundle. In addition to a dorsal and a ventral group, a third population of neurons was located ventral to the lateral forebrain bundle adjacent to the optic tract. The dorsal group of neurons exhibited extensive collaterals; a few extended laterally towards the lateral forebrain bundle, whereas others ran into the dorsocentral area of the area dorsalis telencephali. A few processes extended via the anterior commissure into the telencephalon ipsilateral to the optic nerve that had been exposed to cobaltous lysine. However, the ventral cell group did not possess collaterals. In the diencephalon, retinopetal cells were visualised in the nucleus opticus dorsolateralis located in the pretectal area; these were the largest retinopetal perikarya of the brain. The caudal-most nucleus that possessed labelled somata was the retinothalamic nucleus; it contained the largest number of retinopetal cells. The limited number of widely distributed neurons in the forebrain, some with extensive collaterals, might participate in functional integration of different brain areas involved in feeding, which in this species is influenced largely by taste, not solely by vision.  相似文献   
4.
Summary Applying a double-immunofluorescence technique, the porcine ovary is demonstrated to receive two populations of NPY-immunoreactive nerve fibres originating from the inferior mesenteric ganglion: one with colocalized tyrosine hydroxylase and supplying predominantly the ovarian vasculature, and a second, solely NPY-immunoreactive and almost exclusively associated with growing follicles. A third group of tyrosine hydroxylase-and dopamine--hydroxylase-positive, but NPY-negative nerve fibres is associated with ovarian blood vessels and, to a minor extent, with ovarian follicles. As revealed by retrograde tracing, the vast majority of postganglionic neurons projecting to the ovary is located in a discrete area of the ganglion, suggesting a somatotopic organization of the porcine inferior mesenteric ganglion. Moreover, the finding indicate that three subpopulations of postganglionic sympathetic neurons with different chemical codes supply different target components of the porcine ovary. The physiological relevance of the described neurons in the nervous control of ovarian functions remains to be elucidated.A portion of these results has been presented in abstract form (Majewski et al. 1991)  相似文献   
5.
Acetyl-coenzyme A: choline O-acetyltransferase (EC 2.3.1.6) (ChAT) enzyme activity was measured in the nucleus basalis and other microscopically identified brain areas at various times after unilateral cortical lesions were made in the rat. Initially, a significant decrease in ChAT activity was detected in the nucleus basalis ipsilateral to the lesion. However, after 120 days ChAT activity had apparently recovered, as levels of the enzyme at that time were not significantly different from control values. No changes in ChAT activity could be detected in any of the other brain areas similarly studied. The significance of these findings and their relationship to the morphological changes seen in neurones of the nucleus basalis after cortical lesions are discussed.  相似文献   
6.
用逆行溃变(Kohnstamm,1902;Yagita,et al.,1909;Torvik,1957)局部电刺激中枢(Chatfield,1942;Magoun et al.,1942;Wang,1943)等方法进行唾液中枢的定位,所得到结果很不一致。近年Satomi(1979)等用辣根过氧化酶(HRP)浸泡猫中间一面神经或鼓索神经,观察了脑干中逆行标记细胞的分布。但用HRP直接浸泡支配猫颌下腺的神经分支尚未见报道。此外,只见到关于鼓索神经纤维类别和数量的分析的光学显微镜研究(Foley,1945),用光镜和电镜相结合分析颌下腺神经支中的纤  相似文献   
7.
Summary The afferent pathways to the nucleus basalis prosencephali of the pigeon were studied by use of the horseradish peroxidase (HRP) technique. It was confirmed that this nucleus receives a direct pathway from the nucleus sensorius principalis nervi trigemini and that, as in the starling, it receives a direct input from the nucleus lemnisci lateralis, pars ventralis, an auditory relay. Totally novel is the finding that the nucleus basalis prosencephali is the target of a direct pathway originating in the medullary nucleus vestibularis superior. All three pathways bypass the thalamus. From within the telencephalon the nucleus basalis prosencephali also receives fibres from the tuberculum olfactorium and the peri-ectostriatal belt, suggestive of olfactory and visual input. Marked cell bodies were also found in the neostriatum frontolaterale. It is assumed that these arose from HRP uptake by axons of the tractus fronto-archistriatalis that course through the nucleus basalis prosencephali to the anterodorsal archistriatum. Marked fibres and bouton-like formations were observed in the latter structure. The afferents to the nucleus basalis prosencephali are discussed in conjunction with the probable role of the nucleus as a sensorimotor coordinator of the pecking/feeding behaviour of the pigeon.  相似文献   
8.
Efferent projections of the lateral septal nucleus (LS) to the preoptic area and the hypothalamus were identified in 20 female guinea pigs after iontophoretic injection of the anterograde axonal tracer Fluoro-Ruby. Tubero-infundibular (TI) neurons of the preoptic area and the hypothalamus were retrogradely labeled after intracardiac injection of Granular Blue or Fluoro-Gold. Magnocellular neurons of the supraoptic and paraventricular nuclei were also labeled. The double labeling procedure allowed an estimation of the extent of the direct relationship between LS efferents and TI neurons. Contacts between lateral septal fibers and TI cell bodies were mainly observed at the light-microscopical level in the preoptic area. A group of labeled fibers coursing along the third ventricle established sparse connections with hypothalamic periventricular TI neurons. A few appositions was observed in the infundibular (arcuate) nucleus, suggestive of a monosynaptic regulation of TI neurons by a septo-arcuate tract. Close association with labeled magnocellular neurons was also noted at the edge of the supraoptic and paraventricular nuclei. The sparse but direct connections between LS and TI neurons may be involved in the neuroendocrine functions of the LS.  相似文献   
9.
The small intestine of the pig has been investigated for its topographical distribution of enteric neurons projecting to the cranial mesenteric ganglion, by using Fast Blue or Fluorogold as a retrogradely transported neuronal tracer. Contrary to the situation in small laboratory animals such as rat and guinea-pig, the intestinofugally projecting neurons in the porcine small intestine were not restricted to the myenteric plexus, but were observed in greater numbers in ganglia of the outer submucous plexus. The inner submucous plexus was devoid of labelled neurons. Retrogradely labelled neurons were mostly found, either singly or in small aggregates, in ganglia located within a narrow border on either side of the mesenteric attachment. For both nerve networks, their number increased from duodenum to ileum. All the retrogradely labelled neurons exhibited a multidendritic uniaxonal appearance. Some of them displayed type-III morphology and stained for serotonin. This study indicates that, in the pig, not only the myenteric plexus but also one submucous nerve network is involved in the afferent component of intestino-sympathico-intestinal reflex pathways. The finding that some of the morphologically defined type-III neurons participate in these reflexes is in accord with the earlier proposal that type-III neurons are supposed to fulfill an interneuronal role, whether intra- or extramurally.  相似文献   
10.
利用32P同位素示踪法对白浆土中P肥利用率进行了研究.结果表明,在岗地白浆土上,表层土壤表现出一定程度的供P不足现象,白浆层土壤有效P含量严重缺乏.表层土壤中当季P肥利用率的变幅范围为6.09~12.35%,白浆层土壤P肥利用率为13%左右.施用有机肥能明显提高白浆土Olsen P的含量,加速土壤本身P的活化,各种有机物中,以猪粪对土壤潜在P的活化效果最好.将Olsen P与X值、A值比较,认为Olsen P是评价白浆上P肥力简便易行的可靠指标.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号