首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   4篇
  国内免费   5篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   7篇
  2012年   7篇
  2011年   3篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   8篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1996年   1篇
  1994年   3篇
  1992年   3篇
  1989年   2篇
  1988年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   3篇
  1972年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
1.
The relationship between overnight postabsorptive (fasting) respiratory exchange ratio (RER) and plasma FFA concentrations was addressed using data from three separate protocols, each of which involved careful control of the antecedent diet. Protocol 1 examined the relationship between fasting RER and the previous daytime RER. In Protocol 2 fasting, RER and plasma palmitate concentrations were measured in 29 women and 31 men (body mass index <30 kg·m−2). Protocol 3 analyzed data from Nielsen et al. (Nielsen, S., Z. K. Guo, J. B. Albu, S. Klein, P. C. O''Brien, M. D. Jensen. 2003. Energy expenditure, sex and endogenous fuel availability in humans. J. Clin. Invest. 111: 981-988.) to understand how fasting RER and palmitate concentrations relate within individuals during four consecutive measurements. The results were as follows: 1) Fasting RER was correlated (r = 0.74, P < 0.001) with the previous day''s average RER, and less so with RER variability. 2) Fasting RER was correlated (r = −0.39, P = 0.007) with fasting plasma palmitate concentrations. 3) The pattern of the RER/palmitate relationship was similar within individuals and between individuals; a negative slope was observed significantly more often than a positive slope (χ2 test; P < 0.001). Our findings suggest that, despite a fixed food quotient, the slight departures from energy equilibrium in a controlled General Clinical Research Center environment can effect plasma FFA concentrations. We suggest that including indirect calorimetry as part of FFA metabolism studies may aid in data interpretation.  相似文献   
2.
The cation-independent mannose 6-phosphate receptor (215,000 daltons) was isolated from embryonic bovine tracheal cells and embryonic human skin fibroblasts labelled with [3H]palmitic acid. The tritium label was detected in the protein upon fluorographic analysis of SDS-polyacrylamide gels of the purified receptor. The label was not sensitive to hydroxylamine, methanolic KOH, or beta-mercaptoethanol, but labelled fatty acid was recovered from the protein by acidic methanolysis. Labelled receptor protein could not be isolated from cells grown in the presence of [3H]myristic acid. The results suggest the presence of amide-linked palmitic acid in the structure of the cation-independent mannose 6-phosphate receptor.  相似文献   
3.
The interrelation of palmitate oxidation with amino acid formation in rat brain mitochondria has been investigated in purified mitochondria of nonsynaptic origin by measuring the formation of aspartate, -ketoglutarate, and glutamate during palmitate oxidation, and also by assaying14C-products of [1-14C]palmitate oxidation. Oxidation of palmitate (or [1-14C]palmitate) resulted in the formation of aspartate (or14C-aspartate), and the oxidation was inhibited by aminooxyacetate (an inhibitor of transaminase), Palmitate oxidation also resulted in -ketoglutarate formation, which was sensitive to the effect of aminooxyacetate. Addition of NH4Cl was found to increase14C-products and formation of -ketoglutarate, whereas glutamate formation was not increased unless the rate of palmitate oxidation was reduced by 50% by aminooxyacetate or -ketoglutarate was added exogenously. Exogenous -ketoglutarate was found to decrease14C-products, but not aspartate formation. These results indicated that palmitate oxidation was closely related to aspartate formation via aspartate aminotransferase. During palmitate oxidation without aminooxyacetate or added -ketoglutarate, however, -ketoglutarate was not available for glutamate formation via glutamate dehydrogenase. We discuss the possibility that this was because (a) oxidative decarboxylation of -ketoglutarate to form succinyl-CoA was favored over glutamate formation for the competition for -ketoglutarate in the same pool, and (b) the pool of -ketoglutarate produced in the aspartate aminotransferase reaction did not serve as substrate for glutamate formation.  相似文献   
4.
We examined the dose response, time course and reversibility of the effect of methyl 2-tetradecylglycidate (McN-3716, methyl palmoxirate or MEP), an inhibitor of -oxidation of fatty acids, on incorporation of radiolabeled palmitic acid ([U-14C]PA) from plasma into brain lipids of awake rats. MEP (0.1, 1 and 10 mg/kg) or vehicle was administered intravenously from 10 min to 72 hr prior to infusion of [U-14C]PA. Two hr pretreatment with MEP (0.1 to 10 mg/kg) increased brain organic radioactivity 1.2 to 1.8 fold and decreased brain aqueous radioactivity by 1.2 to 3.0 fold when compared to control values. At 10 mg/kg, MEP significantly increased brain organic fraction from 40% in controls to 85%, 30 min to 6 hr pretreatment, and resulted in a redistribution of the radiolabeled fatty acid toward triacylglycerol. MEP changed the lipid/aqueous brain ratio of incorporated [U-14C]PA from 0.67 to 5.7. The incorporation rate coefficient, k*, was significantly increased by MEP (10 mg/kg) at 2 hr (31%), 4 hr (59%) and 6 hr (34%). All effects were reversed by 72 hr, consistent with a half-life of 2 days for carnitine palmitoyl transferase I. These results indicate that intravenous MEP may be used with [1-11C]palmitic acid for studying brain lipid metabolism in vivo by positron emission tomography, as it significantly reduces the large unincorporated aqueous fraction that would result in high background radioactivity.  相似文献   
5.
6.
Ascorbyl palmitate (ASC16) is an anionic amphiphilic molecule of pharmacological interest due to its antioxidant properties. We found that ASC16 strongly interacted with model membranes. ASC16 penetrated phospholipid monolayers, with a cutoff near the theoretical surface pressure limit. The presence of a lipid film at the interface favored ASC16 insertion compared with a bare air/water surface. The adsorption and penetration time curves showed a biphasic behavior: the first rapid peak evidenced a fast adsorption of charged ASC16 molecules to the interface that promoted a lowering of surface pH, thus partially neutralizing and compacting the film. The second rise represented an approach to the equilibrium between the ASC16 molecules in the subphase and the surface monolayer, whose kinetics depended on the ionization state of the film. Based on the Langmuir dimiristoylphosphatidylcholine + ASC16 monolayer data, we estimated an ASC16 partition coefficient to dimiristoylphosphatidylcholine monolayers of 1.5 × 105 and a ΔGp = − 6.7 kcal·mol− 1. The rheological properties of the host membrane were determinant for ASC16 penetration kinetics: a fluid membrane, as provided by cholesterol, disrupted the liquid-condensed ASC16-enriched domains and favored ASC16 penetration. Subphase pH conditions affected ASC16 aggregation in bulk: the smaller structures at acidic pHs showed a faster equilibrium with the surface film than large lamellar ones. Our results revealed that the ASC16 interaction with model membranes has a highly complex regulation. The polymorphism in the ASC16 bulk aggregation added complexity to the equilibrium between the surface and subphase form of ASC16, whose understanding may shed light on the pharmacological function of this drug.  相似文献   
7.
Differences in lipid metabolism associate with age‐related disease development and lifespan. Inflammation is a common link between metabolic dysregulation and aging. Saturated fatty acids (FAs) initiate pro‐inflammatory signalling from many cells including monocytes; however, no existing studies have quantified age‐associated changes in individual FAs in relation to inflammatory phenotype. Therefore, we have determined the plasma concentrations of distinct FAs by gas chromatography in 26 healthy younger individuals (age < 30 years) and 21 healthy FA individuals (age > 50 years). Linear mixed models were used to explore the association between circulating FAs, age and cytokines. We showed that plasma saturated, poly‐ and mono‐unsaturated FAs increase with age. Circulating TNF‐α and IL‐6 concentrations increased with age, whereas IL‐10 and TGF‐β1 concentrations decreased. Oxidation of MitoSOX Red was higher in leucocytes from FA adults, and plasma oxidized glutathione concentrations were higher. There was significant colinearity between plasma saturated FAs, indicative of their metabolic relationships. Higher levels of the saturated FAs C18:0 and C24:0 were associated with lower TGF‐β1 concentrations, and higher C16:0 were associated with higher TNF‐α concentrations. We further examined effects of the aging FA profile on monocyte polarization and metabolism in THP1 monocytes. Monocytes preincubated with C16:0 increased secretion of pro‐inflammatory cytokines in response to phorbol myristate acetate‐induced differentiation through ceramide‐dependent inhibition of PPARγ activity. Conversely, C18:1 primed a pro‐resolving macrophage which was PPARγ dependent and ceramide dependent and which required oxidative phosphorylation. These data suggest that a midlife adult FA profile impairs the switch from proinflammatory to lower energy, requiring anti‐inflammatory macrophages through metabolic reprogramming.  相似文献   
8.
9.
Using a method and model developed in our laboratory to quantitatively study brain phospholipid metabolism, in vivo rates of incorporation and turnover of docosahexaenoic acid in brain phospholipids were measured in awake rats. The results suggest that docosahexaenoate incorporation and turnover in brain phospholipids are more rapid than previously assumed and that this rapid turnover dilutes tracer specific activity in brain docoshexaenoyl-CoA pool due to release and recycling of unlabeled fatty acid from phospholipid metabolism. Fractional turnover rates for docosahexaenoate within phosphatidylinositol, choline glycerophospholipids, ethanolamine glycerophospholipids and phosphatidylserine were 17.7, 3.1, 1.2, and 0.2 %.h–1, respectively. Chronic lithium treatment, at a brain level considered to be therapeutic in humans (0.6 mol.g–1), had no effect on turnover of docosahexaenoic acid in individual brain phospholipids. Consistent with previous studies from our laboratory that chronic lithium decreased the turnover of arachidonic acid within brain phospholipids by up to 80% and attenuated brain phospholipase A2 activity, the lack of effect of lithium on docosahexaenoate recycling and turnover suggests that a target for lithium's action is an arachidonic acid-selective phospholipase A2.  相似文献   
10.
Several genetic and transgenic mouse models are currently being used for studying the regulation of myocardial contractility under normal conditions and in disease states. Little information has been provided, however, about myocardial energy metabolism in mouse hearts. We measured glycolysis, glucose oxidation and palmitate oxidation (using 3H-glucose, 14C-glucose and 3H-palmitate) in isolated working mouse hearts during normoxic conditions (control group) and following a 15 min global no-flow ischemic period (reperfusion group). Fifty min following reperfusion (10 min Langendorff perfusion + 40 min working heart perfusion) aortic flow, coronary flow, cardiac output, peak systolic pressure and heart rate were 44 ± 4, 88 ± 4, 57 ± 4, 94 ± 2 and 81 ± 4% of pre-ischemic values. Rates of glycolysis and glucose oxidation in the reperfusion group (13.6 ± 0.8 and 2.8 ± 0.2 mol/min/g dry wt) were not different from the control group (12.3 ± 0.6 and 2.5 ± 0.2 mol/min/g dry wt). Palmitate oxidation, however, was markedly elevated in the reperfusion group as compared to the control group (576 ± 37 vs. 357 ± 21 nmol/min/g dry wt, p < 0.05). This change in myocardial substrate utilization was accompanied by a marked fall in cardiac efficiency measured as cardiac output/oxidative ATP production (136 ± 10 vs. 54 ± 5 ml/mol ATP, p < 0.05, control and reperfusion group, respectively). We conclude that ischemia-reperfusion in isolated working mouse hearts is associated with a shift in myocardial substrate utilization in favour of fatty acids, in line with previous observations in rat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号