首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2114篇
  免费   193篇
  国内免费   392篇
  2024年   13篇
  2023年   42篇
  2022年   53篇
  2021年   61篇
  2020年   71篇
  2019年   83篇
  2018年   69篇
  2017年   82篇
  2016年   82篇
  2015年   89篇
  2014年   91篇
  2013年   113篇
  2012年   76篇
  2011年   113篇
  2010年   87篇
  2009年   95篇
  2008年   108篇
  2007年   132篇
  2006年   111篇
  2005年   95篇
  2004年   74篇
  2003年   70篇
  2002年   56篇
  2001年   57篇
  2000年   47篇
  1999年   42篇
  1998年   50篇
  1997年   34篇
  1996年   31篇
  1995年   43篇
  1994年   28篇
  1993年   46篇
  1992年   29篇
  1991年   32篇
  1990年   28篇
  1989年   37篇
  1988年   32篇
  1987年   31篇
  1986年   24篇
  1985年   24篇
  1984年   37篇
  1983年   17篇
  1982年   35篇
  1981年   32篇
  1980年   29篇
  1979年   27篇
  1978年   13篇
  1977年   6篇
  1976年   8篇
  1974年   5篇
排序方式: 共有2699条查询结果,搜索用时 15 毫秒
1.
The mechanism of depletion of tricarboxylic acid cycle intermediates by isolated rat heart mitochondria was studied using hydroxymalonate (an inhibitor of malic enzymes) and mercaptopicolinate (an inhibitor of phosphoenolpyruvate carboxykinase) as tools. Hydroxymalonate inhibited the respiration rate of isolated mitochondria in state 3 by 40% when 2 mM malate was the only external substrate, but no inhibition was found with 2 mM malate plus 0.5 mM pyruvate as substrates. In the prescence od bicarbonate, arsenite and ATP, propionate was converted to pyruvate and malate at the rates of 14.0 ± 2.9 and 2.8 ± 1.8 nmol/mg protein in 5 min, respectively. Under these conditions, 0.1 mM mercaptopicolinate did not affect this conversion, but 2 mM hydroxymalonate inhibited pyruvate formation completely and resulted in an accumulation of malate up to 13.2 ± 2.9 nmol/mg protein. No accumulation of phosphoenolpyruvate was found under any condition tested. It is concluded that malic enzymes but not phosphoenolpyruvate carboxykinase, are involved in conversion of propionate to pyruvate in isolated rat heart mitochondria.  相似文献   
2.
《植物生态学报》2016,40(8):748
Aims Grazing intensity and grazing exclusion affect ecosystem carbon cycling by changing the plant community and soil micro-environment in grassland ecosystems. The aims of this study were: 1) to determine the effects of grazing intensity and grazing exclusion on litter decomposition in the temperate grasslands of Nei Mongol; 2) to compare the difference between above-ground and below-ground litter decomposition; 3) to identify the effects of precipitation on litter production and decomposition. Methods We measured litter production, quality, decomposition rates and soil nutrient contents during the growing season in 2011 and 2012 in four plots, i.e. light grazing, heavy grazing, light grazing exclusion and heavy grazing exclusion. Quadrate surveys and litter bags were used to measure litter production and decomposition rates. All data were analyzed with ANOVA and Pearson’s correlation procedures in SPSS. Important findings Litter production and decomposition rates differed greatly among four plots. During the two years of our study, above-ground litter production and decomposition in heavy-grazing plots were faster than those in light-grazing plots. In the dry year, below-ground litter production and decomposition in light-grazing plots were faster than those in heavy-grazing plots, which is opposite to the findings in the wet year. Short-term grazing exclusion could promote litter production, and the exclusion of light-grazing could increase litter decomposition and nutrient cycling. In contrast, heavy-grazing exclusion decreased litter decomposition. Thus, grazing exclusion is beneficial to the restoration of the light-grazing grasslands, and more human management measures are needed during the restoration of heavy-grazing grasslands. Precipitation increased litter production and decomposition, and below-ground litter was more vulnerable to the inter-annual change of precipitation than above-ground litter. Compared to the light-grazing grasslands, heavy-grazing grasslands had higher sensitivity to precipitation. The above-ground litter decomposition was strongly positively correlated with the litter N content (R2 = 0.489, p < 0.01) and strongly negatively correlated with the soil total N content (R2 = 0.450, p < 0.01), but it was not significantly correlated with C:N and lignin:N. Below-ground litter decomposition was negatively correlated with the litter C (R2 = 0.263, p < 0.01), C:N (R2 = 0.349, p < 0.01) and cellulose content (R2 = 0.460, p < 0.01). Our results will provide a theoretical basis for ecosystem restoration and the research of carbon cycling.  相似文献   
3.
Eutrophication resulting from nutrient enrichment decreases water quality and harms ecosystem structure and function, and its degree is significantly affected by land use in the catchment. Quantifying the relationship between eutrophication and land use can help effectively manage land use to improve water quality. Previous studies principally utilized land use quantity as an indicator to link water quality parameters, but these studies lacked insight into the impact of land use intensity. Taking the upper catchment of Miyun Reservoir as a case study, we developed a method of aggregating land use quantity and intensity to build a new land use indicator and tested its explanatory power on water quality. Six nutrient concentrations from 52 sub-watersheds covering the whole catchment were used to characterize the spatial distribution of eutrophication. Based on spatial techniques, empirical conversion coefficients, remote sensing data, and socio-economic statistical data, land use intensity was measured and mapped visually. The new land use indicator was calculated and linked to nutrient concentrations by Pearson correlation coefficients. Results demonstrated that our new indicator incorporating intensity information can quantify the different nutrient-exporting abilities of different land use areas. Compared to traditional indicators that only incorporate land use quantity, most Pearson correlation coefficients between the new indicator and water nutrient concentrations increased. This new information enhanced the explanatory power of land use on water nutrient concentrations, and so will be able to help us understand the impact of land use on water quality and guide decision making for better land use management.  相似文献   
4.
Abstract. The nearest‐neighbour technique is used to infer competition and facilitation between the three most abundant species in a semi‐arid region of western South Africa. Relationships among the shrubs Leipoldtia schultzei and Ruschia robusta, which are leaf‐succulent members of the Mesembryanthemaceae (‘mesembs’) and Hirpicium alienatum a non‐succulent Asteraceae, were compared on two adjacent sites with different histories of browsing intensity. Competition was more prevalent and more important than facilitation. The only evidence for facilitation was found at the heavily‐browsed site where the palatable Hirpicium was larger under the unpalatable Leipoldtia. Generally the prevalence and importance of competition was reduced at the heavily‐browsed site. Strong evidence was obtained for intraspecific competition in each of the three species; also, competition was evident between the two mesembs, where Leipoldtia was competitively dominant over Ruschia, although neither species inhibited Hirpicium. Minimal competition between the mesembs and the asteraceous shrub was interpreted in terms of differentiation in rooting depth, and competition within the mesembs, in terms of overlap in rooting depth. The mesembs had the bulk of their roots in the top 5 cm of soil, while the asteraceous shrub had the bulk of its roots, and all its fine roots, at greater depths. The shallow‐rooted morphology of the mesembs is well adapted to utilize small rainfall events, which occur frequently in the Succulent Karoo, and do not penetrate the soil deeply. Modifications of existing methods are applied for analysing nearest‐neighbour interactions.  相似文献   
5.
The relationship between prominent visual imagery and emotion within dreams was investigated in relation to E. Hartmann's (1996) contextualizing image (CI) theory and M. Seligman and A. Yellen's (1987) dual imagery theory. Fifty-nine students recorded dreams over a 2-week period and submitted 115 dreams for analysis. Participants recorded ratings of emotion type and emotion intensity in each scene. Prominent visual images were identified and scored for intensity and detail by independent judges. As hypothesized from Hartmann's theory, there was a significant positive relationship between CI intensity and emotion intensity in the CI scene, emotion intensity generally peaked in the CI scene, and dreams containing a CI had higher overall ratings of emotion intensity than non-CI dreams. The result for the correlation of detail of prominent imagery with emotion was inconclusive, with a low positive correlation across CI scenes. This raises the possibility that the CI is not a unitary construct. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
6.
CO2 fixation was studied in a lichen, Xanthoria parietina, kept in continuous light, and with cyclic changes in light intensity, dark period or temperature. The diurnal and seasonal courses of CO2 exchange were followed. The rate of net photosynthesis was observed to fall from morning to evening, and this decline was more pronounced in winter than in summer. The maximal net photosynthetic rate, 223 ng CO2g-1dws-1, occured in winter and the minimum, 94 ng CO2g-1dws-1, late in spring. The light compensation point in summer was four times as high as in winter. In continuous light (180 or 90 mol photons m-2s-1, 15°C) net photosynthesis decreased noticeably during one week, falling below the level maintained in a 12 h light: 12 h dark cycle. Photosynthetic activity did not decrease, however, in lichens held in continuous light (90 mol photons m-2s-1) with cyclic changes of temperature (12 h 20 °C: 12 h 5 °C). Active photosynthesis was also maintained in light of cyclically changing intensity (12 h: 12 h, 15 °C) when night-time light was at least 75% lower than illumination by day. A dark period of 4 hours in a 24-h light:dark cycle was sufficient to keep CO2 fixation at the control level. It seems that plants need an unproductive period during the day to survive and this can be induced by fluctuations in light and/or temperature.  相似文献   
7.
E. Komor  M. Thom  A. Maretzki 《Planta》1987,170(1):34-43
Suspension-cultured cells of sugarcane (Saccharum sp. hybrids) did not oxidize exogenously supplied NADH in the absence of ferricyanide (potassium hexacyanoferrate [III]), whereas they did at a low rate in the presence of ferricyanide. Concomitantly, ferricyanide was reduced at a slow rate. Neither a pH change nor a change in respiration was caused by the addition of NADH and-or ferricyanide, but ferricyanide was a strong inhibitor of sugar transport. In contrast to cells, protoplasts rapidly oxidized exogenous NADH. This oxidation was accompanied by an increase in oxygen consumption and a net proton disappearance from the medium. Exogenous ferricyanide was reduced only slowly by protoplasts. Simultaneous presence of NADH and ferricyanide produced two effects: 1) a very rapid stoichiometric oxidation of NADH and reduction of ferricyanide until one of the reaction compounds was exhausted, and 2) a nearly instantaneous inhibition of the slower phase of NADH oxidation, which was observed in the presence of NADH but absence of ferricyanide. The extra oxygen consumption and the alkalinization of the medium, as observed with NADH, were also immediately stopped by ferric ions and ferrous ions. The presence of NADH and ferricyanide caused a fast stoichiometric acidification of the medium. These results were taken as evidence that the oxidation of NADH in the absence of ferricyanide is not related to the NADH-ferricyanide-coupled redox reaction. Furthermore, addition of NADH caused some uncoupling of the protoplasts, an effect which would explain the strong acidification of the cell cytoplasm and the inhibition of various transport systems. The NADH-oxidizing systems oxidized both the -configurated pyridine nucleotide and the -configurated form. Since NADH-linked dehydrogenases usually do not work with -NADH (with the exception of the endoplasmic-reticulum-bound electron-transport system), the observed activities could have been derived from contaminating membranes and dying protoplasts in the suspension. All reported reactions partly or predominantly occurred in the supernatant of the protoplast suspension and increased considerably during incubation of the protoplasts. The rates and quantities of oxygen consumption, pH change, and ferricyanide reduction fitted with NADH oxidation in a stoichiometric ratio, which implied that all these reactions occurred in the extracellular space, without involving transmembrane steps. No evidence for a physiological role in energization of the plasmalemma was found.Abbreviation NADH -nicotinamide adenine dinucleotide reduced form  相似文献   
8.
Measurement of the light response of photosynthetic CO2 uptake is often used as an implement in ecophysiological studies. A method is described to calculate photosynthetic parameters, such as the maximum rate of whole electron transport and dissimilative respiration in the light, from the light response of CO2 uptake. Examples of the light-response curves of flag leaves and ears of wheat (Triticum aestivum cv. ARKAS) are shown.Abbreviations and symbols A net photosynthesis rate - D 1 rate of dissimilative respiration occurring in the light - f loss factor - I incident PPFD - I effective absorbed PPFD - J rate of whole electron transport - J m maximum rate of whole electron transport - p c intercellular CO2 partial pressure - PPFD photosynthetic photon flux density - q effectivity factor for the use of light (electrons/quanta) - absorption coefficient - I * CO2 compensation point in the absence of dissimilative respiration (bar) - II conversion factor for calculation of CO2 uptake from the rate of whole electron transport - convexity factor Gas-exchange rates relate to the projective area and are given in mol·m-2·s-1. Electron-transport rates are given in mol electrons·m-2·s-1; PPFD is given in mol quanta·m-2·s-1.  相似文献   
9.
When growing in laternating light-dark cycles, nitrogenase activity (acetylene reduction) in the filamentous, non-heterocystous cyanobacterium Oscillatoria sp. strain 23 (Oldenburg) is predominantly present during the dark period. Dark respiration followed the same pattern as nitrogenase. Maximum activities of nitrogenase and respiration appeared at the same time and were 3.6 mol C2H4 and 1.4 mg O2 mg Chl a -1·h-1, respectively. Cultures, adapted to light-dark cycles, but transferred to continuous light, retained their reciprocal rhythm of oxygenic photosynthesis and nitrogen fixation. Moreover, even in the light, oxygen uptake was observed at the same rate as in the dark. Oxygen uptake and nitrogenase activity coincided. However, nitrogenase activity in the light was 6 times as high (22 mol C2H4 mg Chl a -1·h-1) as compared to the dark activity. Although some overlap was observed in which both oxygen evolution and nitrogenase activity occurred simultaneously, it was concluded that in Oscillatoria nitrogen fixation and photosynthesis are separated temporary. If present, light covered the energy demand of nitrogenase and respiration very probably fulfilled a protective function.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号