首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2019年   4篇
  2018年   4篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2004年   2篇
  2003年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
Prostate cancer (CaP) is the second leading malignancy in men. The role of epithelial cell adhesion molecule (EpCAM), also known as CD326, in CaP progression and therapeutic resistance is still uncertain. Here, we aimed to investigate the roles of EpCAM in CaP metastasis and chemo/radioresistance. Expression of EpCAM in CaP cell lines and human CaP tissues was assessed using immunofluorescence and immunohistochemistry, respectively. EpCAM was knocked down (KD) in PC-3, DU145 and LNCaP-C4-2B cells using small interfering RNA (siRNA), and KD results were confirmed by confocal microscope, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Cell growth was evaluated by proliferation and colony formation assays. The invasive potential was assessed using a matrigel chamber assay. Tumorigenesis potential was measured by a sphere formation assay. Chemo-/radiosensitivity were measured using a colony formation assay. Over-expression of EpCAM was found in primary CaP tissues and lymph node metastases including cancer cells and surrounding stromal cells. KD of EpCAM suppressed CaP proliferation and invasive ability, reduced sphere formation, enhanced chemo-/radiosensitivity, and down-regulated E-cadherin, p-Akt, p-mTOR, p-4EBP1 and p-S6K expression in CaP cells. Our findings suggest that EpCAM plays an important role in CaP proliferation, invasion, metastasis and chemo-/radioresistance associated with the activation of the PI3K/Akt/mTOR signaling pathway and is a novel therapeutic target to sensitize CaP cells to chemo-/radiotherapy.  相似文献   
2.
The plasma membrane-associated sialidase NEU3 is known to play important roles in different physiological and pathophysiological processes such as proliferation, cellular differentiation and tumorigenesis. Up-regulation of NEU3 has been associated to several tumors and recently it was demonstrated that its down-modulation in glioblastoma cells promotes cell invasiveness. To date, no information concerning the possible role played by NEU3 in relation to tumor radioresistance is available. Here we show that overexpression of NEU3 in glioblastoma U87MG cells activates PI3K/Akt signaling pathway resulting in an increased radioresistance capacity and in an improved efficiency of double strand DNA-repair mechanisms after irradiation. Our results demonstrate for the first time that NEU3 contributes to the radioresistance features of U87MG cells, bringing to evidence a novel rand peculiar role of the enzyme in cancer biology.  相似文献   
3.
Hyaluronan synthase 2 (HAS2), a synthetic enzyme for hyaluronan, regulates various aspects of cancer progression, including migration, invasion and angiogenesis. However, the possible association of HAS2 with the response of cancer cells to anticancer radiotherapy, has not yet been elucidated. Here, we show that HAS2 knockdown potentiates irradiation-induced DNA damage and apoptosis in cancer cells. Upon exposure to radiation, all of the tested human cancer cell lines exhibited marked (up to 10-fold) up-regulation of HAS2 within 24 h. Inhibition of HAS2 induction significantly reduced the survival of irradiated radioresistant and -sensitive cells. Interestingly, HAS2 depletion rendered the cells to sustain irradiation-induced DNA damage, thereby leading to an increase of apoptotic death. These findings indicate that HAS2 knockdown sensitizes cancer cells to radiation via persistent DNA damage, further suggesting that the irradiation-induced up-regulation of HAS2 contributes to the radioresistance of cancer cells. Thus, HAS2 could potentially be targeted for therapeutic interventions aimed at radiosensitizing cancer cells.  相似文献   
4.
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential component of cellular defense against a vast variety of endogenous and exogenous insults, including oxidative stress. Nrf2 acts as a master switch in the circuits upregulating the expression of various stress-response proteins, especially heme oxygenase-1 (HO-1). Paradoxically, however, recent studies have demonstrated oncogenic functions of Nrf2 and its major target protein HO-1. Levels of Nrf2 and HO-1 are elevated in many different types of human malignancies, which may facilitate the remodeling of the tumor microenvironment making it advantageous for the autonomic growth of cancer cells, metastasis, angiogenesis, and tolerance to chemotherapeutic agents and radiation and photodynamic therapy. In this context, the cellular stress response or cytoprotective signaling mediated via the Nrf2–HO-1 axis is hijacked by cancer cells for their growth advantage and survival of anticancer treatment. Therefore, Nrf2 and HO-1 may represent potential therapeutic targets in the management of cancer. This review highlights the roles of Nrf2 and HO-1 in proliferation of cancer cells, their tolerance/resistance to anticancer treatments, and metastasis or angiogenesis in tumor progression.  相似文献   
5.
虫生真菌蝉拟青霉的研究   总被引:1,自引:0,他引:1  
观察了蝉拟青霉的无性世代,在24℃下载片培养结果,分生孢子经8hr萌发,24hr普遍形成菌丝,36hr出现产孢结构和产生次代分生孢子。该菌生长合适温度24—26℃,分生孢子萌芽要求相对湿度在90%以上。pH4—12范围均见生长,但以5—6为佳。对10种碳源和9种无机氮源利用检测结果,用葡萄糖作碳源孢子产量高,用果糖作碳源菌丝体产量高。不利用菊糖、L-山梨糖、L-鼠李糖。对KNO_3利用佳,但不能利用NaNO_2,和硫脲。该菌能较强抗紫外辐射。  相似文献   
6.
Mature adipocytes are excellent candidates to influence tumor behavior through heterotypic signaling processes since these cells produce hormones, growth factors, cytokines and other molecules, a heterogeneous group of molecules named adipokines. Using a 2D coculture system, we demonstrate that breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance and an earlier and higher increase in the effector kinase Chk1, a phenotype that was associated with decreased cell death as compared to tumor cells grown alone. Interestingly, the adipocytes-induced tumor changes taking place during the coculture time preceding the exposure to IR were sufficient to confer the radioresistant effect. Notorious among the changes brought by adipocytes was the significant increase of IL-6 expression in tumor cells, whose activity may well account for the observed tumor cell protection from IR toxicity. Indeed, our data confirmed the protective role of this cytokine as tumor cells incubated after irradiation with recombinant IL-6 exhibit an increased in Chk1 phosphorylation and a radioresistant phenotype, thus far recapitulating the effects observed in the presence of adipocytes. Our current study sheds light on a new role of tumor-surrounding adipocytes in fostering a radioresistant phenotype in breast tumors, a finding that might have important clinical implications in obese patients that frequently exhibit aggressive diseases.  相似文献   
7.
Currently, cancer treatment mainly consists of surgery, radiotherapy, chemotherapy, immunotherapy, and molecular targeted therapy, of which radiotherapy is one of the major pillars. However, the occurrence of radioresistance largely limits its therapeutic effect. Metabolic reprogramming is an important hallmark in cancer progression and treatment resistance. In radiotherapy, DNA breakage is the major mechanism of cell damage, and in turn, cancer cells are prone to increase the metabolic flux of glucose, glutamine, serine, arginine, fatty acids etc., thus providing sufficient substrates and energy for DNA damage repair. Therefore, studying the linkage between metabolic reprogramming and cancer radioresistance may provide new ideas for improving the efficacy of tumor therapy. This review mainly focuses on the role of metabolic alterations, including glucose, amino acid, lipid, nucleotide and other ion metabolism, in radioresistance, and proposes possible therapeutic targets to improve the efficacy of cancer radiotherapy.  相似文献   
8.
Radiation treatment induces neuroendocrine differentiation (NED) in non-small cell lung cancer (NSCLC) A549 and H157 cells, so higher NE-like features in radioresistant A549 (A549R26-1) and H157 (H157R24-1) cells are observed than in parental cells. We detected higher NED marker expressions in A549R26-1 cell-derived tumors than in A549 cell-derived tumors. In mechanism studies, we found that NED induction in A549R26-1 and H157R24-1 cells was accompanied by increased intracellular cAMP and IL-6 levels. Treatment of radioresistant lung cancer cells with the inhibitor (SQ22536) of adenylate cyclase (AC) which is the enzyme responsible for the cAMP production, or the neutralizing antibody (Ab) of IL-6, resulted in decreased NE-like features in radioresistant lung cancer cells. In addition, we found MEK/Erk is the signaling pathway that triggers the cAMP- and IL-6-mediated NED induction in radioresistant lung cancer cells. Also, we found that MEK/Erk signaling pathway inhibition decreased NED in radioresistant cells. Radioresistant lung cancer cells exhibiting high NE-like features also showed higher radioresistance and higher metastatic potential than parental cells. When we inhibited cAMP-, or IL-6-mediated pathways, or the downstream MEK/Erk signaling pathway, radiosensitivity of radioresistant lung cancer cells was significantly increased and their metastatic potential was significantly reduced. In in vivo mouse studies, reducing NED by treating mice with the MEK/Erk inhibitor increased radiosensitivity. Immunohistochemical staining of tumor tissues lowered expressions of the NED/epithelial-mesenchymal transition (EMT)/metastatic markers when mice were treated with the MEK/Erk inhibitor.  相似文献   
9.
The protein kinase-encoding genes RCK1 and RCK2 from Saccharomyces cerevisiae have been identified as suppressors of Schizosaccharomyces pombe cell cycle checkpoint mutations. Upon expression of these genes, radiation resistance is partially restored in S. pombe mutants with checkpoint deficiencies, but not in mutants with DNA repair defects. Some checkpoint mutants are sensitive to the DNA synthesis inhibitor hydroxyurea, and this sensitivity is also suppressed by RCK1 and RCK2. The degree of suppression can be modulated by varying expression levels. Expression of RCK1 or RCK2 in S. pombe causes cell elongation and decelerated growth. Cells expressing these genes have a single nucleus and a 2n DNA content. We conclude that these genes act in S. pombe to prolong the G2 phase of the cell cycle.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号