首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   22篇
  国内免费   10篇
  2024年   1篇
  2023年   10篇
  2022年   6篇
  2021年   20篇
  2020年   19篇
  2019年   29篇
  2018年   18篇
  2017年   7篇
  2016年   14篇
  2015年   20篇
  2014年   26篇
  2013年   31篇
  2012年   19篇
  2011年   16篇
  2010年   10篇
  2009年   10篇
  2008年   9篇
  2007年   6篇
  2006年   7篇
  2005年   6篇
  2004年   8篇
  2003年   2篇
  2002年   6篇
  2000年   1篇
  1995年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有304条查询结果,搜索用时 15 毫秒
1.
Proinsulin C-peptide has previously been proposed to interact with a G-protein coupled receptor (GPCR), specifically the orphan receptor GPR146. To investigate the potential of C-peptide in treating complications of diabetes, such as kidney damage, it is necessary to understand its mode of action. We used CHO-K1 cells expressing human GPR146 to study human and murine C-peptide in dynamic mass redistribution and GPCR β-arrestin assays, as well as with fluorescence confocal microscopy. Neither assay revealed any significant intracellular response to C-peptide at concentrations of up to 33 µM. We observed no internalisation of C-peptide by fluorescence microscopy. Our results do not support GPR146 as the receptor for C-peptide, but suggest that further investigations of the mode of action of C-peptide should be undertaken.  相似文献   
2.
The -isopropylmalate synthase of the chemolithoautotrophic Alcaligenes eutrophus H16 is apparently a soluble enzyme but is strongly adsorbed to cell particles in ruptured cell suspensions. This was not observed with -acetohydroxy acid synthase or threonine deaminase. The formation of these regulatory enzymes of the branched chain amino acid biosynthesis pathway generally decreased with decreased growth rates. The addition of 5 mM valine plus isoleucine with and without 5 mM threonine caused a 6.6- and a 4-fold increase, respectively, in the formation of active -isopropylmalate synthase, but caused a strong decrease in the -actohydroxy acid synthase. The level of active -isopropylmalate synthase is apparently regulated by the level of leucine; whereas, the level of the -acetohydroxy acid synthase and threonine deaminase is influenced by the presence of several amino acids. A catabolic threonine deaminase was not encountered.Abbreviations IRS -Isopropylamalate - AHA -acetohydroxy acid - TDA throninedeaminase This paper is dedicated to Professor H. G. Schlegel, University Göttingen, on the occasion of his 60th birthday. I am grateful to a great teacher and scientist, who in his unique way stimulated enthusiasm and fascination in microbiology in his students throughout the years  相似文献   
3.
RNF7 has been reported to play critical roles in various cancers. However, the underlying mechanisms of RNF7 in glioma development remain largely unknown. Herein, the expression level of RNF7 was examined in tissues by quantitative real-time PCR, Western blotting and immunohistochemistry. The effect of RNF7 on glioma progression was measured by performing CCK-8 and apoptosis assays, cell cycle-related experiments and animal experiments. The effect of RNF7 on PI3K/AKT signalling pathway was tested by Western blotting. First, we found that RNF7 was upregulated in tumour tissue compared with normal brain tissue, especially in high-grade glioma, and the high expression of RNF7 was significantly related to tumour size, Karnofsky Performance Scale score and a poor prognosis. Second, RNF7 overexpression facilitated tumour cell cycle progression and cell proliferation and suppressed apoptosis. Conversely, RNF7 knockdown suppressed tumour cell cycle progression and cell proliferation and facilitated apoptosis. Furthermore, follow-up mechanistic studies indicated that RNF7 could facilitate glioma cell proliferation and cell cycle progression and inhibit apoptosis by activating the PI3K/AKT signalling pathway. This study shows that RNF7 can clearly promote glioma cell proliferation by facilitating cell cycle progression and inhibiting apoptosis by activating the PI3K/AKT signalling pathway. Targeting the RNF7/PI3K/AKT axis may provide a new perspective on the prevention or treatment of glioma.  相似文献   
4.
摘要 目的:研究腔隙性脑梗死(LI)伴脑白质病变(WML)患者血清miR-146a和神经元特异性烯纯化酶(NSE)水平与蒙特利尔认知评估量表(MoCA)评分的关系。方法:纳入我院从2017年3月~2019年3月收治的LI伴WML患者108例进行研究,记作LI伴WML组。另取同期收治的单纯WML患者与单纯LI患者各100例,分别记作WML组与LI组,再取同期于我院进行体检的健康人员100例作为对照组。比较四组人员的血清miR-146a和NSE水平、MoCA评分,并作相关性分析。结果:LI伴WML组、WML组、LI组血清miR-146a相对表达量均低于对照组,而LI伴WML组血清miR-146a相对表达量又显著低于WML组、LI组(均P<0.05);LI伴WML组、WML组、LI组血清NSE水平均显著高于对照组,且LI伴WML组血清NSE水平均显著高于WML组、LI组(均P<0.05)。LI伴WML组MoCA总分显著低于WML组与LI组,且WML组与LI组MoCA总分显著低于对照组(均P<0.05)。经Pearson相关性分析可得:LI伴WML组患者血清miR-146a相对表达量与MoCA总分呈正相关关系(P<0.05),而血清NSE水平与MoCA总分呈负相关关系(P<0.05)。结论:LI伴WML患者的血清miR-146a水平存在明显低表达,而NSE水平存在明显高表达,并与MoCA评分相关,两者可能在认知功能损伤的发生、发展过程中起着至关重要的作用。  相似文献   
5.
During the DNA damage response (DDR), chromatin modifications contribute to localization of 53BP1 to sites of DNA double-strand breaks (DSBs). 53BP1 is phosphorylated during the DDR, but it is unclear whether phosphorylation is directly coupled to chromatin binding. In this study, we used human diploid fibroblasts and HCT116 tumor cells to study 53BP1 phosphorylation at Serine-25 and Serine-1778 during endogenous and exogenous DSBs (DNA replication and whole-cell or sub-nuclear microbeam irradiation, respectively). In non-stressed conditions, endogenous DSBs in S-phase cells led to accumulation of 53BP1 and γH2AX into discrete nuclear foci. Only the frank collapse of DNA replication forks following hydroxyurea treatment initiated 53BP1Ser25 and 53BP1Ser1778 phosphorylation. In response to exogenous DSBs, 53BP1Ser25 and 53BP1Ser1778 phosphoforms localized to sites of initial DSBs in a cell cycle-independent manner. 53BP1 phosphoforms also localized to late residual foci and associated with PML-NBs during IR-induced senescence. Using isogenic cell lines and small-molecule inhibitors, we observed that DDR-induced 53BP1 phosphorylation was dependent on ATM and DNA-PKcs kinase activity but independent of MRE11 sensing or RNF168 chromatin remodeling. However, loss of RNF168 blocked recruitment of phosphorylated 53BP1 to sites of DNA damage. Our results uncouple 53BP1 phosphorylation from DSB localization and support parallel pathways for 53BP1 biology during the DDR. As relative 53BP1 expression may be a biomarker of DNA repair capacity in solid tumors, the tracking of 53BP1 phosphoforms in situ may give unique information regarding different cancer phenotypes or response to cancer treatment.  相似文献   
6.
《Autophagy》2013,9(12):2239-2250
Autophagy is an evolutionarily conserved biological process involved in an array of physiological and pathological events. Without proper control, autophagy contributes to various disorders, including cancer and autoimmune and inflammatory diseases. It is therefore of vital importance that autophagy is under careful balance. Thus, additional regulators undoubtedly deepen our understanding of the working network, and provide potential therapeutic targets for disorders. In this study, we found that RNF216 (ring finger protein 216), an E3 ubiquitin ligase, strongly inhibits autophagy in macrophages. Further exploration demonstrates that RNF216 interacts with BECN1, a key regulator in autophagy, and leads to ubiquitination of BECN1, thereby contributing to BECN1 degradation. RNF216 was involved in the ubiquitination of lysine 48 of BECN1 through direct interaction with the triad (2 RING fingers and a DRIL [double RING finger linked]) domain. We further showed that inhibition of autophagy through overexpression of RNF216 in alveolar macrophages promotes Listeria monocytogenes growth and distribution, while knockdown of RNF216 significantly inhibited these outcomes. These effects were confirmed in a mouse model of L. monocytogenes infection, suggesting that manipulating RNF216 expression could be a therapeutic approach. Thus, our study identifies a novel negative regulator of autophagy and suggests that RNF216 may be a target for treatment of inflammatory diseases.  相似文献   
7.
Complex chromosomal rearrangements are very rare chromosomal abnormalities. Individuals with a complex chromosomal rearrangement can be phenotypically normal or display a clinical abnormality. It is believed that these abnormalities are due to either microdeletions or microduplications at the translocation breakpoints or as a result of disruption of the genes located in the breakpoints. In this study we describe a 2-year-old child with mental retardation and developmental delay in whom a de novo apparently balanced exceptional complex chromosomal rearrangement was found through conventional cytogenetic analysis. Using both cytogenetic and FISH analysis, the patient's karyotype was found to be: 46,XY,der(5)t(5;7)(p15.1;7q34),t(5;8)(q13.1;8q24.1)dn. A large, clinically significant deletion which encompassed 887.69 kb was detected at the 5q12.1–5q12.3 (chr5:62.886.523–63.774.210) genomic region using array-CGH. This deleted region includes the HTR1A and RNF180 genes. This is the first report of an individual with an apparently balanced complex chromosomal rearrangement in conjunction with a microdeletion at 5q12.1–5q12.3 in which there are both mental-motor retardation and dysmorphia.  相似文献   
8.
The melanoma cell adhesion molecule (CD146) contains a circulating proteolytic variant (sCD146), which is involved in inflammation and angiogenesis. Its circulating level is modulated in different pathologies, but its intracellular transduction pathways are still largely unknown. Using peptide pulldown and mass spectrometry, we identified angiomotin as a sCD146-associated protein in endothelial progenitor cells (EPC). Interaction between angiomotin and sCD146 was confirmed by enzyme-linked immunosorbent assay (ELISA), homogeneous time-resolved fluorescence, and binding of sCD146 on both immobilized recombinant angiomotin and angiomotin-transfected cells. Silencing angiomotin in EPC inhibited sCD146 angiogenic effects, i.e. EPC migration, proliferation, and capacity to form capillary-like structures in Matrigel. In addition, sCD146 effects were inhibited by the angiomotin inhibitor angiostatin and competition with recombinant angiomotin. Finally, binding of sCD146 on angiomotin triggered the activation of several transduction pathways that were identified by antibody array. These results delineate a novel signaling pathway where sCD146 binds to angiomotin to stimulate a proangiogenic response. This result is important to find novel target cells of sCD146 and for the development of therapeutic strategies based on EPC in the treatment of ischemic diseases.  相似文献   
9.
10.
细胞内DNA会受部分外界因素(如紫外辐射,电离辐射和化学毒素)和内部因素(如复制错误)的影响而发生损伤,包括DNA双链断裂、DNA错配和DNA交链等。DNA损伤发生后,损伤部位会被一些蛋白识别,进而招募一系列蛋白至损伤部位,形成一个修复系统。DNA双链断裂是最严重的一种DNA损伤,错误修复往往导致疾病的发生。DNA双链断裂(double strand break, DSB)后,细胞启动RNF8/RNF168信号通路进行修复。RNF8和RNF168是这条通路的枢纽蛋白;53BP和BRCA1是关键的效应蛋白,决定着DSB修复的方式;组蛋白泛素化、磷酸化和甲基化等翻译后修饰是这条通路顺利进行的基本条件;染色质重塑、泛素化酶/去泛素化酶平衡和蛋白稳定性是这条通路的主要调节方式。本综述对RNF8/RNF168信号通路进行了梳理总结,希望其能对相关研究者起到参考作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号