首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22265篇
  免费   1208篇
  国内免费   1503篇
  24976篇
  2024年   32篇
  2023年   340篇
  2022年   531篇
  2021年   670篇
  2020年   602篇
  2019年   830篇
  2018年   684篇
  2017年   455篇
  2016年   531篇
  2015年   659篇
  2014年   1371篇
  2013年   1536篇
  2012年   1049篇
  2011年   1234篇
  2010年   1039篇
  2009年   1001篇
  2008年   1175篇
  2007年   1113篇
  2006年   969篇
  2005年   939篇
  2004年   826篇
  2003年   755篇
  2002年   693篇
  2001年   462篇
  2000年   414篇
  1999年   428篇
  1998年   391篇
  1997年   355篇
  1996年   337篇
  1995年   370篇
  1994年   339篇
  1993年   277篇
  1992年   328篇
  1991年   234篇
  1990年   227篇
  1989年   199篇
  1988年   188篇
  1987年   154篇
  1986年   148篇
  1985年   165篇
  1984年   195篇
  1983年   138篇
  1982年   153篇
  1981年   80篇
  1980年   79篇
  1979年   71篇
  1978年   47篇
  1977年   43篇
  1976年   32篇
  1973年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Since the first revelation of proteins functioning as macromolecular machines through their three dimensional structures, researchers have been intrigued by the marvelous ways the biochemical processes are carried out by proteins. The aspiration to understand protein structures has fueled extensive efforts across different scientific disciplines. In recent years, it has been demonstrated that proteins with new functionality or shapes can be designed via structure-based modeling methods, and the design strategies have combined all available information — but largely piece-by-piece — from sequence derived statistics to the detailed atomic-level modeling of chemical interactions. Despite the significant progress, incorporating data-derived approaches through the use of deep learning methods can be a game changer. In this review, we summarize current progress, compare the arc of developing the deep learning approaches with the conventional methods, and describe the motivation and concepts behind current strategies that may lead to potential future opportunities.  相似文献   
2.
Primary cell cultures were prepared from breast muscles of 11 day 4 hour-embryonic chicks. Cytoplasmic RNAs were isolated from the cultured cells at various time intervals from day 3 to day 8. A [P32] DNA probe complementary to messenger RNA of myosin heavy chain was used to hybridize with the RNAs after gel electrophoresis. A transient species of polyadenylated RNA with a decreased mobility in electrophoresis was detected during a period of time when contractions of syncytial fibers were first observed.  相似文献   
3.
To effectively integrate DNA sequence analysis and classical nematode taxonomy, we must be able to obtain DNA sequences from formalin-fixed specimens. Microdissected sections of nematodes were removed from specimens fixed in formalin, using standard protocols and without destroying morphological features. The fixed sections provided sufficient template for multiple polymerase chain reaction-based DNA sequence analyses.  相似文献   
4.
Three DNA fragments, trs1, 2 and 3, were isolated from the Trichoderma reesei genome on the basis of their ability to promote autonomous replication of plasmids in Saccharomyces cerevisiae. Each trs element bound specifically to the isolated T. reesei nuclear matrix in vitro, and two of them bound in vivo, indicating that they are matrix attachment regions (MARs). A similar sequence previously isolated from Aspergillus nidulans (ans1) was also shown to bind specifically to the T. reesei nuclear matrix in vitro. The T. reesei MARs are AT-rich sequences containing 70%, 86% and 73% A+T over 2.9, 0.8 and 3.7 kb, respectively for trs1, 2 and 3. They exhibited no significant sequence homology, but were shown to contain a number of sequence motifs that occur frequently in many MARs identified in other eukaryotes. However, these motifs occurred as frequently in the trs elements as in randomly generated sequences with the same A+T content. trs1 and 3 were shown to be present as single copies in the T. reesei genome. The presence of the trs elements in transforming plasmids enhanced the frequency of integrative transformation of T. reesei up to five fold over plasmids without a trs. No evidence was obtained to suggest that the trs elements promoted efficient replication of plasmids in T. reseei. A mechanism for the enhancement of transformation frequency by the trs elements is proposed. Received: 1 March 1997 / Accepted: 13 May 1997  相似文献   
5.
6.
7.
Summary Using restriction enzyme digests of genomic DNA extracted from the leaves of 25 hexaploid wheat (Triticum aestivum L. em. Thell.) cultivars and their hybrids, restriction fragment length polymorphisms of the spacer DNA which separates the ribosomal-RNA genes have been examined. (From one to three thousand of these genes are borne on chromosomes 1B and 6B of hexaploid wheat). The data show that there are three distinct alleles of the 1B locus, designated Nor-B1a, Nor-B1b, and Nor-B1c, and at least five allelic variants of the 6B locus, designated Nor-B2a, Nor-B2b, Nor-B2c, Nor-B2d, and Nor-B2e. A further, previously reported allele on 6B has been named Nor-B2f. Chromosome 5D has only one allelic variant, Nor-D3. Whereas the major spacer variants of the 1B alleles apparently differ by the loss or gain of one or two of the 133 bp sub-repeat units within the spacer DNA, the 6B allelic variants show major differences in their compositions and lengths. This may be related to the greater number of rDNA repeat units at this locus. The practical implications of these differences and their application to wheat breeding are discussed.  相似文献   
8.
Summary A temperature shift-up accompanied by a reduction in RNA polymerase activity in Escherichia coli causes an increased rate of initiation leading to a 1.7- to 2.2-fold increase in chromosome copy number. A temperature shift-up without a reduction in polymerase activity induces only a transient non-scheduled initiation of chromosome replication caused by heat shock with no detectable effect on chromosome copy number.  相似文献   
9.
Recent studies have discovered strong differences between the dynamics of nucleic acids (RNA and DNA) and proteins, especially at low hydration and low temperatures. This difference is caused primarily by dynamics of methyl groups that are abundant in proteins, but are absent or very rare in RNA and DNA. In this paper, we present a hypothesis regarding the role of methyl groups as intrinsic plasticizers in proteins and their evolutionary selection to facilitate protein dynamics and activity. We demonstrate the profound effect methyl groups have on protein dynamics relative to nucleic acid dynamics, and note the apparent correlation of methyl group content in protein classes and their need for molecular flexibility. Moreover, we note the fastest methyl groups of some enzymes appear around dynamical centers such as hinges or active sites. Methyl groups are also of tremendous importance from a hydrophobicity/folding/entropy perspective. These significant roles, however, complement our hypothesis rather than preclude the recognition of methyl groups in the dynamics and evolution of biomolecules.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号