首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4298篇
  免费   505篇
  国内免费   89篇
  4892篇
  2024年   17篇
  2023年   153篇
  2022年   187篇
  2021年   356篇
  2020年   312篇
  2019年   283篇
  2018年   290篇
  2017年   196篇
  2016年   188篇
  2015年   219篇
  2014年   359篇
  2013年   389篇
  2012年   250篇
  2011年   253篇
  2010年   132篇
  2009年   169篇
  2008年   188篇
  2007年   152篇
  2006年   147篇
  2005年   123篇
  2004年   78篇
  2003年   83篇
  2002年   63篇
  2001年   52篇
  2000年   24篇
  1999年   39篇
  1998年   29篇
  1997年   27篇
  1996年   23篇
  1995年   18篇
  1994年   28篇
  1993年   13篇
  1992年   13篇
  1991年   5篇
  1990年   8篇
  1989年   10篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1958年   1篇
排序方式: 共有4892条查询结果,搜索用时 15 毫秒
1.
Combination agents comprising two different pharmacophores with the same biological target have the potential to show additive or synergistic activity. Bis(thiosemicarbazonato)copper(II) complexes (e.g. 64Cu-ATSM) and nitroimidazoles (e.g. 18F-MISO) are classes of tracer used for the delineation of tumor hypoxia by positron emission tomography (PET). Three nitroimidazole-bis(thiosemicarbazonato)copper(II) conjugates were produced in order to investigate their potential as combination hypoxia imaging agents. Two were derived from the known bifunctional bis(thiosemicarbazone) H2ATSM/A and the third from the new precursor diacetyl-2-(4-N-methyl-3-thiosemicarbazone)-3-(4-N-ethylamino-3-thiosemicarbazone) - H2ATSM/en. Oxygen-dependent uptake studies were performed using the 64Cu radiolabelled complexes in EMT6 carcinoma cells. All the complexes displayed appreciable hypoxia selectivity, with the nitroimidazole conjugates displaying greater selectivity than a simple propyl derivative used as a control. Participation of the nitroimidazole group in the trapping mechanism is indicated by the increased hypoxic uptake of the 2- vs. the 4-substituted 64Cu-ATSM/A derivatives. The 2-nitroimidazole derivative of 64Cu-ATSM/en demonstrated superior hypoxia selectivity to 64Cu-ATSM over the range of oxygen concentrations tested. Biodistribution of the radiolabelled 2-nitroimidazole conjugates was carried out in EMT6 tumor-bearing mice. The complexes showed significantly different uptake trends in comparison to each other and previously studied Cu-ATSM derivatives. Uptake of the Cu-ATSM/en conjugate in non-target organs was considerably lower than for derivatives based on Cu-ATSM/A.  相似文献   
2.
This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non‐invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH‐sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH‐sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole‐root tissues of A. thaliana is reported. The utility of pH‐sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated.  相似文献   
3.
Collagen is an attractive marker for tissue remodeling in a variety of common disease processes. Here we report the preparation of protein dendrimers as multivalent collagen targeting ligands by native chemical ligation of the collagen binding protein CNA35 to cysteine-functionalized dendritic divalent (AB2) and tetravalent (AB4) wedges. The binding of these multivalent protein constructs was studied on collagen-immobilized chip surfaces as well as to native collagen in rat intestinal tissues. To understand the importance of target density we also created collagen-mimicking surfaces by immobilizing synthetic collagen triple helical peptides at various densities on a chip surface. Multivalent display of a weak-binding variant (CNA35-Y175K) resulted in a large increase in collagen affinity, effectively restoring the collagen imaging capacities for the AB4 system. In addition, dissociation of these multivalent CNA35 dendrimers from collagen surfaces was found to be strongly attenuated.  相似文献   
4.
Carcinoma tissue consists of not only tumor cells but also fibroblasts, endothelial cells or vascular structures, and inflammatory cells forming the supportive tumor stroma. Therefore, the spatial distribution of proteins that promote growth and proliferation in these complex functional units is of high interest. Matrix-assisted laser desorption/ionization imaging mass spectrometry is a newly developed technique that generates spatially resolved profiles of protein signals directly from thin tissue sections. Surface-enhanced laser desorption/ionization mass spectrometry (MS)combined with tissue microdissection allows analysis of defined parts of the tissue with a higher sensitivity and a broader mass range. Nevertheless, both MS-based techniques have a limited spatial resolution. IHC is a technique that allows a resolution down to the subcellular level. However, the detection and measurement of a specific protein expression level is possible only by semiquantitative methods. Moreover, prior knowledge about the identity of the proteins of interest is necessary. In this study, we combined all three techniques to gain highest spatial resolution, sensitivity, and quantitative information. We used frozen tissue from head and neck tumors and chose two exemplary proteins (HNP1–3 and S100A8) to highlight the advantages and disadvantages of each technique. It could be shown that the combination of these three techniques results in congruent but also synergetic data. (J Histochem Cytochem 58:929–937, 2010)  相似文献   
5.
Thermographic visualization of cell death in tobacco and Arabidopsis   总被引:4,自引:0,他引:4  
Pending cell death was visualized by thermographic imaging in bacterio‐opsin transgenic tobacco plants. Cell death in these plants was characterized by a complex lesion phenotype. Isolated cell death lesions were preceded by a colocalized thermal effect, as previously observed at sites infected by tobacco mosaic virus (TMV) ( Chaerle et al. 1999 Nature Biotechnology 17, 813–816). However, in most cases, a coherent front of higher temperature, trailed by cell death, initiated at the leaf base and expanded over the leaf lamina. In contrast to the homogenous thermal front, cell death was first visible close to the veins, and subsequently appeared as discrete spots on the interveinal tissue, as cell death spread along the veins. Regions with visible cell death had a lower temperature because of water evaporation from damaged cells. In analogy with previous observations on the localized tobacco–TMV interaction ( Chaerle et al. 1999 ), the kinetics of thermographic and continuous gas exchange measurements indicated that stomatal closure preceded tissue collapse. Localized spontaneous cell death could also be presymptomatically visualized in the Arabidopsis lsd2 mutant.  相似文献   
6.
The isolated blood-perfused lung preparation is widely used to visualize and define signaling in single microvessels. By coupling this preparation with real time imaging, it becomes feasible to determine permeability changes in individual pulmonary microvessels. Herein we describe steps to isolate rat lungs and perfuse them with autologous blood. Then, we outline steps to infuse fluorophores or agents via a microcatheter into a small lung region. Using these procedures described, we determined permeability increases in rat lung microvessels in response to infusions of bacterial lipopolysaccharide. The data revealed that lipopolysaccharide increased fluid leak across both venular and capillary microvessel segments. Thus, this method makes it possible to compare permeability responses among vascular segments and thus, define any heterogeneity in the response. While commonly used methods to define lung permeability require postprocessing of lung tissue samples, the use of real time imaging obviates this requirement as evident from the present method. Thus, the isolated lung preparation combined with real time imaging offers several advantages over traditional methods to determine lung microvascular permeability, yet is a straightforward method to develop and implement.  相似文献   
7.
《Neuron》2020,105(2):237-245.e4
  1. Download : Download high-res image (214KB)
  2. Download : Download full-size image
  相似文献   
8.
This clinical study is a first attempt to use autofluorescence for recurrence diagnosis of skin cancer in postoperative scars. The proposed diagnostic parameter is based on a reduction in scar autofluorescence, evaluated in the green spectral channel. The validity of the method has been tested on 110 postoperative scars from 56 patients suspected of non‐melanoma skin cancer, with eight patients (13 scars) available for the repeated examination. The recurrence diagnosis within a scar has been made after two subsequent autofluorescence check‐ups, representing the temporal difference between the scar autofluorescence amplitudes as a vector. The recognition of recurrence has been discussed to represent the significant deviations from the value of vector angle θ. This new autofluorescence‐based method can be easily integrated into the postoperative monitoring of surgical scars and can help diagnose the recurrence of skin cancer from the early stage of scar development.  相似文献   
9.
We investigated the relationship between intracellular Ca2+ and pH homeostasis in Madin-Darby canine kidney-focus (MDCK-F) cells, a cell line exhibiting spontaneous oscillations of intracellular Ca2+ concentration (Ca i 2+ ). Ca i 2+ and intracellular pH (pH i ) were measured with the fluorescent dyes Fura-2 and BCECF by means of video imaging techniques. Ca2+ influx from the extracellular space into the cell was determined with the Mn2+ quenching technique. Cells were superfused with HEPES-buffered solutions. Under control conditions (pH 7.2), spontaneous Ca i 2+ oscillations were observed in virtually all cells investigated. Successive alkalinization and acidification of the cytoplasm induced by an ammonia ion prepulse had no apparent effect on Ca i 2+ oscillations. On the contrary, changes of extracellular pH value strongly affected Ca i 2+ oscillations. Extracellular alkalinization to pH 7.6 completely suppressed oscillations, whereas extracellular acidification to pH 6.8 decreased their frequency by 40%. Under the same conditions, the respective pH i changes were less than 0. 1 pH units. However, experiments with the Mn2+ quenching technique revealed that extracellular alkalinization significantly reduced Ca2+ entry from the extracellular space. Large increases of Ca i 2+ triggered by the blocker of the cytoplasmic Ca2+-ATPase, thapsigargin, had no effect on pH i We conclude: intracellular Ca2+ homeostasis in MDCK-F cells is pH dependent. pH controls Ca2+ homeostasis mainly by effects on the level of Ca2+ entry across the plasma membrane. On the contrary, the intracellular pH value seems to be insensitive to rapid changes of Ca i 2+ .The project was supported by the Deutsche Forschungsgemeinschaft, SFB-176 (A6) and by the Jubilämusstiftung of the University of Würzburg.The authors gratefully acknowledge the valuable discussions with Drs. M.J. Berridge, M. Carew, I. Davidson, G. Law and B. Somasundraman. We are grateful to Applied Imaging for financial and technical support and to the Medical Research Council for financial support.  相似文献   
10.
We examined the dose response, time course and reversibility of the effect of methyl 2-tetradecylglycidate (McN-3716, methyl palmoxirate or MEP), an inhibitor of -oxidation of fatty acids, on incorporation of radiolabeled palmitic acid ([U-14C]PA) from plasma into brain lipids of awake rats. MEP (0.1, 1 and 10 mg/kg) or vehicle was administered intravenously from 10 min to 72 hr prior to infusion of [U-14C]PA. Two hr pretreatment with MEP (0.1 to 10 mg/kg) increased brain organic radioactivity 1.2 to 1.8 fold and decreased brain aqueous radioactivity by 1.2 to 3.0 fold when compared to control values. At 10 mg/kg, MEP significantly increased brain organic fraction from 40% in controls to 85%, 30 min to 6 hr pretreatment, and resulted in a redistribution of the radiolabeled fatty acid toward triacylglycerol. MEP changed the lipid/aqueous brain ratio of incorporated [U-14C]PA from 0.67 to 5.7. The incorporation rate coefficient, k*, was significantly increased by MEP (10 mg/kg) at 2 hr (31%), 4 hr (59%) and 6 hr (34%). All effects were reversed by 72 hr, consistent with a half-life of 2 days for carnitine palmitoyl transferase I. These results indicate that intravenous MEP may be used with [1-11C]palmitic acid for studying brain lipid metabolism in vivo by positron emission tomography, as it significantly reduces the large unincorporated aqueous fraction that would result in high background radioactivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号