首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   4篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2015年   1篇
  2011年   3篇
  2008年   1篇
排序方式: 共有10条查询结果,搜索用时 359 毫秒
1
1.
2.
3.
Aim The boreal tree line is a prominent biogeographic feature, the position of which reflects climatic conditions. Pollen is the key sensor used to reconstruct past tree line patterns. Our aims in this study were to investigate pollen–vegetation relationships at the boreal tree line and to assess the success of a modified version of the biomization method that incorporates pollen productivity and dispersal in distinguishing the tree line. Location Northern Canada (307 sites) and Alaska (316 sites). Methods The REVEALS method for estimating regional vegetation composition from pollen data was simplified to provide correction factors to account for differential production and dispersal of pollen among taxa. The REVEALS‐based correction factors were used to adapt the biomization method and applied as a set of experiments to pollen data from lake sediments and moss polsters from the boreal tree line. Proportions of forest and tundra predicted from modern pollen samples along two longitudinal transects were compared with those derived from a vegetation map by: (1) a tally of ‘correct’ versus ‘incorrect’ assignments using vegetation in the relevant map pixels, and (2) a comparison of the shape and position of north–south forest‐cover curves generated from all transect pixels and from pollen data. Possible causes of bias in the misclassifications were assessed. Results Correcting for pollen productivity alone gave fewest misclassifications and the closest estimate of the modern mapped tree line position (Canada, + 300 km; Alaska, + 10 km). In Canada success rates were c. 40–70% and all experiments over‐predicted forest cover. Most corrections improved results over uncorrected biomization; using only lakes improved success rates to c. 80%. In Alaska success rates were 70–80% and classification errors were more evenly distributed; there was little improvement over uncorrected biomization. Main conclusions Corrected biomization should improve broad‐scale reconstructions of spatial patterns in forest/non‐forest vegetation mosaics and across climate‐sensitive ecotones. The Canadian example shows this is particularly the case in regions affected by taxa with extremely high pollen productivity (such as Pinus). Improved representation of actual vegetation distribution is most likely if pollen data from lake sediments are used because the REVEALS algorithm is based on the pollen dynamics of lake‐based systems.  相似文献   
4.
5.
6.
The need for quantification of land cover from pollen data has led to the development of a Landscape Reconstruction Algorithm (LRA). The LRA includes several models of which the REVEALS model estimates regional vegetation abundance using pollen assemblages from large sites (lakes or bogs). In this paper we explore the effects of selection and number of pollen samples, and choice of pollen productivity estimates on the REVEALS results. The effect of the size of vegetation surveys is also tested. The results suggest that the differences between two sizes of vegetation surveys have little effect on the model validation. The “characteristic radius” of regional vegetation in southern Sweden was estimated as 200 km. However, the vegetation composition in a 100 × 100 km2 square matches well with that estimated by REVEALS. Whether 25, 20 (outliers excluded) or 4 pollen samples are used does not change the REVEALS reconstructions much although the error estimates are larger when outliers are included, and very large when only four samples are used. Therefore validation of the REVEALS model and REVEALS reconstructions of past vegetation can be performed using a limited number of pollen samples, although with caution. The use of many pollen samples from multiple sites is always better whenever possible. REVEALS reconstructions are closer to the actual vegetation when the Danish Pollen Productivity Estimates (PPEs) are used instead of the Swedish PPEs for Cereals, Rumex acetosa/acetosella, Plantago lanceolata and Calluna, indicating that the Danish PPEs are more reliable than the Swedish ones for those taxa. It is recommended to test more than one set of PPEs in validation and applications of the REVEALS model for a better evaluation of the results.  相似文献   
7.
8.
Aim Observations of long chronosequences in forest ecosystems show that, after some millennia of build‐up, biomass declines in relation to the slow depletion of soil phosphorus. Plants that dominate during this period of soil impoverishment have specialized strategies for P acquisition, including ectomycorrhiza or root clusters. We use quantitative, pollen‐based reconstructions of regional vegetation in four Quaternary warm stages (Holocene, Eemian, Holsteinian, Harreskovian) to test whether inferred forest cover and productivity changes are consistent with long‐term modification of soil nutrient pools. Location Southern Scandinavia (Denmark, southern Sweden). Methods The REVEALS model was used to estimate regional vegetation abundances of 25 pollen‐type‐equivalent taxa from pollen records of large sedimentary basins in southernmost Scandinavia. Based on the estimated regional vegetation, we then calculated time‐series of Ellenberg indicator values for L (light), R (soil reaction) and N (a productivity proxy). We classified the vegetation records into distinct phases and compared these phases and the samples using hierarchical clustering and ordination. Results All three interglacials developed coniferous or mixed forests. However, pure deciduous forests were never reached during the Holsteinian, while pure coniferous forests never developed in the Holocene. Above‐ground productivity was inferred to be low initially, peaking in the first third of the warm stages and then slowly declining (except during the Holocene). Dominant trees of the post‐peak phases all had ectomycorrhiza as a strategy for P acquisition, indicating that easily accessible P pools had become depleted. Increases in fire regimes may have amplified the inferred final drop in productivity. Mid/late Holocene productivity changes were much influenced by agricultural activities. Main conclusions REVEALS vegetation estimates combined with Ellenberg indicator values suggest a consistent pattern in warm stages of initially rising productivity, followed by a long and slow decline. The P‐acquisition strategies of dominant trees indicate that the decline reflects increasing P depletion of soils.  相似文献   
9.
Previous studies based on fossil pollen data have reported significant changes in vegetation on the alpine Tibetan Plateau during the Holocene. However, since the relative proportions of fossil pollen taxa are largely influenced by individual pollen productivities and the dispersal characteristics, such inferences on vegetation have the potential to be considerably biased. We therefore examined the modern pollen–vegetation relationships for four common pollen species on the Tibetan Plateau, using Extended R-value (ERV) models. Assuming an average radius of 100 m for the sampled lakes, we estimated the relevant source area of pollen (RSAP) to be 2200 m (which represents the distance from the lake). Using Poaceae as the reference taxa (Pollen Productivity Estimate, PPE = 1), ERV Submodel 2 derived relative high PPEs for the steppe and desert taxa: 2.079 ± 0.432 for Artemisia and 5.379 ± 1.077 for Chenopodiaceae. Low PPEs were estimated for the Cyperaceae (1.036 ± 0.012), whose plants are characteristic of the alpine Kobresia meadows. Applying these PPEs to four fossil pollen sequences since the Late Glacial, the plant abundances on the central and north-eastern Tibetan Plateau were quantified using the “Regional Estimates of Vegetation Abundance from Large Sites” (REVEALS) model. The proportions of Artemisia and Chenopodiaceae were greatly reduced compared to their original pollen percentages in the reconstructed vegetation, owing to their high productivities and their dispersal characteristics, while Cyperaceae showed a relative increase in the vegetation reconstruction. The reconstructed vegetation assemblages of the four pollen sequence sites always yielded smaller compositional species turnovers than suggested by the pollen spectra, as revealed by Detrended Canonical Correspondence Analyses (DCCA) of the Holocene sections. The strength of the previously reported vegetation changes may therefore have been overestimated, which indicates the importance of taking into account pollen–vegetation relationships when discussing the potential drivers (such as climate, land use, atmospheric CO2 concentrations) and implications (such as for land surface–climate feedbacks, carbon storage, and biodiversity) of vegetation change.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号