首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2018年   1篇
  2010年   1篇
  2007年   1篇
  2004年   1篇
  1999年   1篇
  1995年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Abstract Two different expression systems were investigated for the production of an 80 amino acid polypeptide, M3, from the C-terminus of the Plasmodium falciparum blood stage antigen Pf155/RESA in an attenuated Salmonella typhimurium vaccine strain. Upon expression, the malarial polypeptide was targeted either to the periplasm as a soluble fusion protein containing two IgG-binding domains (ZZ) from the staphylococcal protein A or, to the bacterial surface as an insert within a chimeric outer membrane protein A (OmpA) derived from Escherichia coli and Shigella dysenteriae . Both the ZZM3 and the OmpAM3 proteins were stably expressed in the periplasm or on the surface of Salmonella , respectively. The ZZ expression system yielded 10–100 times more malarial immunogen than did the OmpA system. Live recombinant Salmonella expressing ZZM3 or OmpAM3 were used to immunize mice intraperitoneally. Both the ZZM3 and OmpAM3 genes persisted for up to three weeks in bacteria isolated from different lymphoid organs. Bacteria expressing ZZM3 induced antibodies to M3, ZZ and to the Pf155/RESA antigen whereas, bacteria producing OmpAM3 induced similar levels of antibodies reactive with M3 but not with Pf155/RESA. Both recombinants induced a memory response of antibodies reactive with both M3 and Pf155/RESA. The high levels of M3 produced by the ZZ expression system make it suitable for the expression of heterologous antigens in Salmonella . Nevertheless, in spite of the quantitative difference in M3 expression, the ZZ and OmpA constructs elicited comparable immune responses to M3.  相似文献   
2.
Synthetic peptides representing repeat sequences of ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum have shown poor immunogenicity and protection. In this study, the RESA peptides [(EENVEHDA)2 and (DDEHVEEPTVA)2] were chemically linked to a universal T-cell determinant, CS.T3, derived from the CS protein of P. falciparum. Polytuftsin (TKPR)40, a polymer of naturally occurring immunomodulator "tuftsin," was physically mixed with these conjugates. These preparations in alum and liposomes were immunized in four inbred strains of mice with different genetic backgrounds to study the humoral response. In the case of liposome-entrapped preparations, a 10 microg dose of antigen showed the optimum antibody response. Mice immunized with liposome containing RESA peptide(s)-CS.T3 conjugate along with polytuftsin showed the highest antibody levels in all the strains, whereas the RESA peptide(s) alone, adsorbed on alum or entrapped in liposomes, showed either poor or moderate antibody levels. The antibodies raised against liposome-entrapped preparations in both high-responder strain (SJL/J H-2s) and low-responder strain (FVB/J H-2q) showed 2 4-fold lower Kd values as compared to the alum adsorbed preparations, suggestive of high affinity antibodies. All the antigen preparations predominantly induced IgG2a and IgG2b isotype response, suggesting that the T-helper response involved is of the CD4 Thl type. The in vitro merozoite reinvasion inhibition assay showed 50-92% inhibition with sera raised against different antigen formulations. The highest percentage inhibition was observed with the RESA peptide-CS.T3 conjugate containing polytuftsin in liposomes. Thus, the incorporation of peptide antigens inside liposomes not only reduced the antigen dose by 5-fold but also elicited a high titre with high affinity antibodies and the inhibition of merozoites to RBC in vitro. Therefore, we conclude that the incorporation of these synthetic constructs in liposomes could be a useful strategy for the development of a subunit immunogen against malaria.  相似文献   
3.
Plasmodium falciparum parasites express and traffick numerous proteins into the red blood cell (RBC), where some associate specifically with the membrane skeleton. Importantly, these interactions underlie the major alterations to the modified structural and functional properties of the parasite-infected RBC. P. falciparum Erythrocyte Membrane Protein 3 (PfEMP3) is one such parasite protein that is found in association with the membrane skeleton. Using recombinant PfEMP3 proteins in vitro, we have identified the region of PfEMP3 that binds to the RBC membrane skeleton, specifically to spectrin and actin. Kinetic studies revealed that residues 38-97 of PfEMP3 bound to purified spectrin with moderately high affinity (KD(kin) = 8.5 × 10− 8 M). Subsequent deletion mapping analysis further defined the binding domain to a 14-residue sequence (IFEIRLKRSLAQVL; KD(kin) = 3.8 × 10− 7 M). Interestingly, this same domain also bound to F-actin in a specific and saturable manner. These interactions are of physiological relevance as evidenced by the binding of this region to the membrane skeleton of inside-out RBCs and when introduced into resealed RBCs. Identification of a 14-residue region of PfEMP3 that binds to both spectrin and actin provides insight into the potential function of PfEMP3 in P. falciparum-infected RBCs.  相似文献   
4.
Intra-erythrocytic Plasmodium falciparum malaria parasites synthesize and export numerous proteins into the red blood cell (RBC) cytosol, where some bind to the RBC membrane skeleton. These interactions are responsible for the altered antigenic, morphological and functional properties of parasite-infected red blood cells (IRBCs). Plasmodium falciparum protein 332 (Pf332) is a large parasite protein that associates with the membrane skeleton and who's function has recently been elucidated. Using recombinant fragments of Pf332 in in vitro interaction assays, we have localised the specific domain within Pf332 that binds to the RBC membrane skeleton to an 86 residue sequence proximal to the C-terminus of Pf332. We have shown that this region partakes in a specific and saturable interaction with actin (Kd = 0.60 µM) but has no detectable affinity for spectrin. The only exported malaria protein previously known to bind to actin is PfEMP3 but here we demonstrate that there is no competition for actin-binding between PfEMP3 and Pf332, suggesting that they bind to different target sequences in actin.  相似文献   
5.
Apical organellar proteins in Plasmodium falciparum merozoites play important roles upon invasion. To date, dense granule, the least studied apical organelle, secretes parasite proteins across the parasitophorous vacuole membrane (PVM) to remodel the infected erythrocyte. Although this phenomenon is key to parasite growth and virulence, only five proteins so far have been identified as dense granule proteins. Further elucidation of dense granule molecule(s) is therefore required. P. falciparum Exported Protein (EXP) 1, previously reported as a parasitophorous vacuole membrane (PVM) protein, is considered essential for parasite growth. In this study, we characterized EXP1 using specific anti-EXP1 antibodies generated by immunization of wheat germ cell-free produced recombinant EXP1. Immunofluorescence microscopy (IFA) demonstrated that EXP1 co-localized with RESA, indicating that the protein is initially localized to dense granules in merozoites, followed by translocation to the PVM. The EXP1 localization in dense granule of merozoites and its translocation to the PVM after invasion of erythrocytes were further confirmed by immunoelectron microscopy. Here, we demonstrate that EXP1 is one of the dense granule proteins in merozoites, which is then transported to the PVM after invasion.  相似文献   
6.
6671 is a non-immunogenic, conserved high activity red blood cell binding peptide located between residues 141 and 160 of the Plasmodium falciparum RESA protein. This peptide's critical red blood cell (RBC) binding residues have been replaced by amino acids having similar mass but different charge to change their immunologic properties. Three analogues (two of them immunogenic and protective and one immunogenic) were studied by purified HLA-DRbeta1* binding and NMR to correlate their structure with their immunological properties. Native peptide 6671 had a very flexible beta-sheet structure, whilst its immunogenic, protective, and non-protective peptide analogues presented an alpha-helical structure having different locations and lengths. These changes in peptide structure facilitated their fitting into HLA-DRbeta1* molecules. This paper shows for the first time how modifications performed on RESA protein non-immunogenic, non-protectogenic peptides impose a configuration allowing them to fit perfectly into the MHC II-TCR complex, in turn leading to appropriate activation of the immune system.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号