首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   416篇
  免费   45篇
  国内免费   58篇
  2024年   1篇
  2023年   14篇
  2022年   10篇
  2021年   16篇
  2020年   17篇
  2019年   16篇
  2018年   14篇
  2017年   17篇
  2016年   22篇
  2015年   12篇
  2014年   15篇
  2013年   30篇
  2012年   21篇
  2011年   15篇
  2010年   13篇
  2009年   25篇
  2008年   19篇
  2007年   20篇
  2006年   28篇
  2005年   20篇
  2004年   14篇
  2003年   24篇
  2002年   11篇
  2001年   16篇
  2000年   11篇
  1999年   7篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   5篇
  1993年   10篇
  1992年   9篇
  1991年   4篇
  1990年   3篇
  1989年   9篇
  1988年   5篇
  1987年   2篇
  1986年   8篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
排序方式: 共有519条查询结果,搜索用时 15 毫秒
1.
2.
3.
Moraxella sp., a native soil organism that grows on p-nitrophenol (PNP), was genetically engineered for the simultaneous degradation of organophosphorus (OP) pesticides and p-nitrophenol (PNP). The truncated ice nucleation protein (INPNC) anchor was used to target the pesticide-hydrolyzing enzyme, organophosphorus hydrolase (OPH), onto the surface of Moraxella sp., alleviating the potential substrate uptake limitation. A shuttle vector, pPNCO33, coding for INPNC-OPH was constructed and the translocation, surface display, and functionality of OPH were demonstrated in both E. coli and Moraxella sp. However, whole cell activity was 70-fold higher in Moraxella sp. than E. coli. The resulting Moraxella sp. degraded organophosphates as well as PNP rapidly, all within 10 h. The initial hydrolysis rate was 0.6 micromol/h/mg dry weight, 1.5 micromol/h/mg dry weight, and 9.0 micromol/h/mg dry weight for methyl parathion, parathion, and paraoxon, respectively. The possibility of rapidly degrading OP pesticides and their byproducts should open up new opportunities for improved remediation of OP nerve agents in the future.  相似文献   
4.
THE SAP OF PLANT CELLS   总被引:6,自引:2,他引:4  
  相似文献   
5.
R. Edwards  W. J. Owen 《Planta》1988,175(1):99-106
An antiserum to glutathione S-transferase (EC 2.5.1.18) from maize (Zea mays L.) responsible for herbicide detoxification has been raised in rabbit. The antiserum was specific to the Mr 26000 subunit of the enzyme from maize seedlings and suspension-cultured cells, and recognized the isoenzymes active toward both atrazine and metolachlor. When plants were treated for 24 h with the herbicide antidote N,N-diallyl-2-2-dich-loroacetamide (DDCA), enzyme activities toward metolachlor were doubled in the roots and this was associated with a 70% increase in immunodetectable protein. Translation of polysomal RNA in vitro showed that the increase in the transferase in root tissue was brought about by a ninefold increase in mRNA activity encoding the enzyme. Treatment of suspension-cultured cells with cinnamic acid, metolachlor and DDCA raised enzyme activities but did not increase synthesis of glutathione S-transferase. In cultured maize cells, enzyme synthesis was maximal in mid-logarithmic phase, coinciding with the highest levels of enzyme activity. When callus cultures were established from the shoots of a maize line known to conjugate chloro-s-triazines, enzyme activity towards atrazine was lost during primary dedifferentiation. However, levels of total immunodetectable enzyme and activity toward metolachlor were increased in cultured cells compared with the parent shoot tissue.  相似文献   
6.
Summary The genetics of paraquat-resistance in Conyza bonariensis was studied. Reciprocal crosses were prepared between resistant and sensitive individuals. The enzymes of the pathway that detoxifies superoxide to innocuous oxygen species involved in resistance were evaluated in the F1 and F2 generations. All F1 plants were as resistant as the resistant parent, irrespective of parental sex, demonstrating dominance and excluding maternal inheritance. The activities of superoxide-dismutase, ascorbate-peroxidase and glutathione-reductase in the F1 were constitutively as high as in the resistant parent. Resistance in the F2 generation was distributed in a 31 ratio (resistant to sensitive). Leaves from F2 plants were removed for a resistance assay and enzyme immuno-assays of single plants were performed. The high levels of superoxide-dismutase and glutathione-reductase, the two enzymes for which antibodies were available, were similar in resistant individuals to the levels in the resistant parent; the levels were low in the susceptible individuals. These results indicate either a very tight linkage, or more probably, that one dominant nuclear gene controls resistance by pleiotropically controlling the levels of enzymes of the activeoxygen detoxification pathway.  相似文献   
7.
Summary We have used the cDNA clone encoding maize glutathione-S-transferase (GST I) to isolate a genomic DNA clone containing the complete GST I gene. Nucleotide sequence analysis of the cDNA and genomic clones has yielded a complete amino acid sequence for maize GST I and provided the exon-intron map of its gene. The mRNA homologous sequences in the maize GST I gene consist of a 107 bp 5 untranslated region, a 642 bp coding region and 340 bp of the 3 untranslated region. They are divided into three exons by two introns which interrupt the coding region. The 5 untranslated spacer contains an unusual sequence of pentamer AGAGG repeated seven times. The inbred maize line (Missouri 17) contains a single gene for GST I, whereas the hybrid line (3780A) contains two genes. Nucleotide sequence analysis of the primer extended cDNA products reveals that the 5 untranslated regions of the two genes in the hybrid 3780A are identical except for a 6 bp internal deletion (or insertion). The amino acid sequence of maize GST I shares no apparent sequence homology with the published sequences of animal GST's and represents the first published sequence of a plant GST. re]19850813 ac]19851126  相似文献   
8.
Abstract: Effects of cadmium (10 nM), copper (80 nM) and zinc (150 nM) additions were studied in the marine diatom Ditylum brightwellii and the riverine diatom Thalassiosira pseudonana . Defense against oxidative stress via cellular thiol (SH) pools and superoxide dismutase (SOD) activation, detoxification via phytochelatins and cell damage were monitored in metal-exposed exponential-phase cells and controls, grown in estuarine medium. Total SH and reduced + oxidized glutathione (GSH + GSSG) in T. pseudonana were much higher than in D. brightwellii . In T. pseudonana , total SH and GSH decreased at 322 nM Zn, and GSH increased at 80 nM Cu but decreased at 119 nM Cu. GSH:GSSG ratios were low, while phytochelatins were not detectable in metal-exposed D. brightwellii . Cd-exposed T. pseudonana made more phytochelatins than Cu-exposed cells, and in different proportions. At 322 nM Zn, SOD activity decreased in T. pseudonana . Zn caused a major, and Cu a minor increase of SOD activity in D. brightwellii ; inhibition of photosynthesis was observed in Cu-exposed D. brightwellii , probably due to oxidative damage. The C:N ratios were higher and protein contents lower in Cu-exposed cells of both species, which might indicate excretion due to a loss of cell membrane integrity. From these results, it is hypothesized that T. pseudonana has evolved an effective detoxification mechanism as a result of a more severe exposure to toxic metals in rivers and estuaries. In contrast, D. brightwellii , a marine-estuarine species, cannot adjust well to metal exposure. Its poor defense against metal toxicity was marked by low SH-contents.  相似文献   
9.
In this study, samples of Wolbachia-infected Aedes aegypti mosquitoes were collected from Al-Safa district in Jeddah city, Saudi Arabia. The presence of Wolbachia bacteria in mosquitoes was confirmed by PCR technique and they were reared and propagated in the laboratory. Comparative studies were conducted between Wolbachia-infected A. Aegypti and the Wolbachia-uninfected laboratory strain in terms of their ability to withstand drought, resist two types of insecticides and the activities of pesticide detoxification enzymes. The Wolbachia-infected A. aegypti strain proved less able to withstand the drought period, as the egg-hatching rate of the Wolbachia-uninfected strain was greater than that of the Wolbachia-infected strain after one, two and three months of dry periods. Compared to the Wolbachia-uninfected strain, the Wolbachia-infected strain demonstrated a relatively greater resistance to tested pesticides, namely Baton 100EC and Fendure 25EC which may be attributed to the higher levels of the detoxification enzymes glutathione-S-transferase and catalase and the lower levels of esterase and acetylcholine esterase.  相似文献   
10.
微生物镉解毒机制及微生物-植物互作修复研究进展   总被引:1,自引:1,他引:0  
镉(cadmium,Cd)是引起粮食减产的主要金属之一,具有高溶解性及高迁移性,易被植物吸收和积累。微生物长期在镉胁迫的条件下进化出一系列的镉解毒机制。微生物对镉的解毒包括抑制Cd(Ⅱ)的进入、促进Cd(Ⅱ)的外排,以及将进入胞内的Cd(Ⅱ)进行“扣押”。微生物的Cd(Ⅱ)钝化是通过细胞吸附和胞外沉淀将游离态的Cd(Ⅱ)进行钝化,这类微生物具有较强的土壤镉污染治理潜力。本文主要介绍微生物的镉解毒机制、微生物-微生物互作、微生物-植物互作机制及其在镉污染生物修复中应用的最新研究进展。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号