首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  2020年   2篇
  2019年   3篇
  2016年   2篇
  2013年   4篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2004年   1篇
  2001年   2篇
  1992年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
Pygoscelis penguins are experiencing general population declines in their northernmost range whereas there are reported increases in their southernmost range. These changes are coincident with decadal‐scale trends in remote sensed observations of sea ice concentrations (SIC) and sea surface temperatures (SST) during the chick‐rearing season (austral summer). Using SIC, SST, and bathymetry, we identified separate chick‐rearing niche spaces for the three Pygoscelis penguin species and used a maximum entropy approach (MaxEnt) to spatially and temporally model suitable chick‐rearing habitats in the Southern Ocean. For all Pygoscelis penguin species, the MaxEnt models predict significant changes in the locations of suitable chick‐rearing habitats over the period of 1982–2010. In general, chick‐rearing habitat suitability at specific colony locations agreed with the corresponding increases or decreases in documented population trends over the same time period. These changes were the most pronounced along the West Antarctic Peninsula where there has been a rapid warming event during at least the last 50 years.  相似文献   
2.
Climate change, fisheries' pressure on penguin prey, and direct human disturbance of wildlife have all been implicated in causing large shifts in the abundance and distribution of penguins in the Southern Ocean. Without mark‐recapture studies, understanding how colonies form and, by extension, how ranges shift is challenging. Genetic studies, particularly focused on newly established colonies, provide a snapshot of colonization and can reveal the extent to which shifts in abundance and occupancy result from changes in demographic rates (e.g., reproduction and survival) or migration among suitable patches of habitat. Here, we describe the population structure of a colonial seabird breeding across a large latitudinal range in the Southern Ocean. Using multilocus microsatellite genotype data from 510 Gentoo penguin (Pygoscelis papua) individuals from 14 colonies along the Scotia Arc and Antarctic Peninsula, together with mitochondrial DNA data, we find strong genetic differentiation between colonies north and south of the Polar Front, that coincides geographically with the taxonomic boundary separating the subspecies P. p. papua and P. p. ellsworthii. Using a discrete Bayesian phylogeographic approach, we show that southern Gentoos expanded from a possible glacial refuge in the center of their current range, colonizing regions to the north and south through rare, long‐distance dispersal. Our findings show that this dispersal is important for new colony foundation and range expansion in a seabird species that ordinarily exhibits high levels of natal philopatry, though persistent oceanographic features serve as barriers to movement.  相似文献   
3.
The breeding performance and population trends of Adélie penguins (Pygoscelis adeliae) was studied at Esperanza/Hope Bay, Antarctic Peninsula, by comparing an area with low levels of human disturbance (LLD) and an area with high levels of human disturbance (HLD), close to an Argentine research station. From 1995/1996 to 2004/2005 (except for 1999/2000 and 2003/2004), the following population parameters were measured in both areas: (1) the number of breeding pairs, (2) the number of chicks in creches and (3) the number of chicks produced by breeding pairs. Counts were made for 26 breeding groups situated in the LLD area and 63 breeding groups located in the HLD area. The number of chicks per breeding pair was obtaobtained by following 100 marked nests in each area. All parameters were measured as described in the CCAMLR Monitoring Program protocols. The magnitude and direction (increasing or decreasing) of the changes in breeding population size and the number of chicks creched were similar in both areas. Overall, the number of breeding pairs decreased from 4,744 to 2,968 (37.4%) in the LLD area, and from 8,744 to 5,378 (38.6%) in the HLD area. The number of chicks fledged increased from 3,808 to 4,065 (6.7%) in the LLD area, and decreased from 6,991 to 6,712 (4%) in the HLD area. Breeding success (chicks fledged per marked nest) did not differ significantly between areas for most of the seasons compared. In 1996/1997, breeding success was significantly higher in the HLD area. Our data suggest that environmental influences currently exert greater effects than human disturbance on the penguin population at Esperanza Bay.  相似文献   
4.
The differential environmental sensitivity of the sexes hasstrong implications in the evolutionary history of species asit can alter sexual size dimorphism, population sex ratios,and the faculty of parents to manipulate offspring sex in relationto environmental conditions. We studied sexual differences inhatching patterns and evaluated sex- and size-related mortalityin relation to hatching order and brood sex ratios in the chinstrappenguin Pygoscelis antarctica, a moderately size-dimorphic species,with a modal clutch size of 2 eggs. We found that male, second-hatched,and large eggs showed shorter hatching periods than female,first-hatched, and small eggs. We also found a male-biased mortalityof nestlings in the colony. However, male mortality patternsdiffered depending on the brood sex ratio composition. Mortalityof male chicks in all-male broods was higher than in mixed broodsand higher than female mortality in all-female broods. Contrary,females from mixed brood showed higher mortality than theirmale nest mates and higher too than females in all-female broods.Second-hatched chicks also suffered from higher mortality thanfirst-hatched chicks. Our results indicate that both the superiorcompetitive capacity and the higher energy demand of the largersex constitute 2 causal factors explaining patterns of sex-biasedmortality. Both factors occur in the same species and in differentsituations of sibling competition shaped by brood sex ratiocomposition. This study constitutes a good example of how patternsof sex-related mortality can vary depending on nest environmentalcircumstances. Furthermore, our study suggests that hatchingperiod can be a mechanism underlying sexual differences in theembryonic period of birds.  相似文献   
5.
6.
Distinguishing morphologically cryptic taxa, by definition, requires genetic data such as DNA sequences. However, DNA sequences may not be obtained easily for taxa from remote sites. Here we provide the details of a high-resolution melt-curve-based method using taxon-specific primers that can distinguish two taxa of Adélie penguins, and that will be usable in Antarctica when combined with some of the newly developed field-deployable thermal cyclers. We suggest that the wider adoption of field-deployable polymerase-chain-reaction-based techniques will enable faster assignation of haplotype to individuals in situ, and so allow the targeting of observations and sample collection to specimens relevant to the research question. Targeting individuals will also reduce the need to repeatedly handle animals and reduce the time and travel required to complete field work.  相似文献   
7.
The diving behavior of Adélie penguins Pygoscelis adeliae was investigated using time–depth recorders during the incubation period in the fast sea-ice area of Lützow-Holm Bay, Antarctica. Dive profiles and activity/time allocation suggested that penguins were obligated to walk on the fast-ice for 90–100 km until a polynya, which they used as an access to the pack-ice zone. Dive depth did not differ between males and females, though males’ dive duration was longer than that of females. Dive depth was slightly shallower and dive duration was shorter during the incubation than during the chick-rearing phase. Birds dove throughout the day, although less frequently around midnight, and there was no clear diel change in dive depth. This daily dive pattern during incubation period was similar to that previously observed during the chick-rearing period in a fast sea-ice area, but differed from that observed in sea-ice-free area. Variations in diving behavior resulted from different environmental conditions, such as foraging area with different sea-ice condition, as well as from different life history strategies.  相似文献   
8.
9.
Antarctic biodiversity is evolutionarily complex, reflecting the extreme ambient conditions. Therefore, Antarctic organisms exhibit sophisticated adaptations in all organization levels, including organs, tissues, and cells. Since red blood cells (RBCs) travel through the vertebrates blood delivering O2 to all tissues and organs and purging the unwanted CO2, they represent an interesting model to investigate biological adaptations. We have used atomic force microscopy (AFM) to compare the shape and size of RBCs of the Pygoscelid penguins. A total of 18 landmarks were measured in AFM images. When analyzed individually, the parameters were not capable of discriminating the RBCs of each species. However, the simultaneous use of multiple parameters discriminated (74%) among the RBCs. In addition, the use of RBC measurements was sufficient to hierarchically cluster the species in accordance to other common and reliable phylogenetic strategies. In light of these results, the use of RBC characters could effectively benefit taxonomic inferences.  相似文献   
10.
Summary Adélie penguins (Pygoscelis adeliae) carrying dummy instruments were used to determine field metabolic rates using double-labelled water. All penguins injected with double-labelled water showed a marked loss of body mass (-4.5%) during the period of the experiments (20–131 h), irrespective of the time of the breeding season. Total body water averaged 57.3% and water flux estimates of field metabolic rates correlated with double-labelled water estimates of field metabolic rate (r 2=0.68), indicating that Adélie penguins do not ingest significant amounts of sea water. Brooding Adélie penguins had a mean field metabolic rate of 10.1 W·kg-1 and at sea a field metabolic rate of 13.3 W·kg-1, both of which compare well with previously published estimates based on time/activity budgets and respirometry. Mean field metabolic rate in penguins with crèching chicks was 14.1 W·kg-1, and the birds spent 65 h absent from the nest as opposed to previous estimates of 7.1 W·kg-1 and 21 h. The effects of weather, disturbance and manipulation on the behaviour and field metabolic rate of penguins late in the breeding season are discussed. Adélie penguins (crèching chicks) equipped with externally attached instruments spent more time absent from the nest than noninstrumented controls (76 vs 54 h), but had a lower field metabolic rate.Abbreviations ANOVA analysis of variance - DLW double-labelled water - FMR field metabolic rate - MR metabolic rate - RMR resting metabolic rate - TBW total body water - VSMOW Vienna standard mean ocean water - WF water flux  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号