首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
2.
3.
Isolated and cultured neonatal cardiac myocytes contract spontaneously and cyclically. The intracellular concentration of free Ca2+ also changes rhythmically in association with the rhythmic contraction of myocytes (Ca2+ oscillation). Both the contraction and Ca2+ oscillatory rhythms are synchronized among myocytes, and intercellular communication via gap junctions has been considered primarily responsible for the synchronization. However, a recent study has demonstrated that intercellular communication via extracellular ATP-purinoceptor signaling is also involved in the intercellular synchronization of intracellular Ca2+ oscillation. In this study, we aim to elucidate whether the concentration of extracellular ATP changes cyclically and contributes to the intercellular synchronization of Ca2+ oscillation among myocytes. In almost all the cultured cardiac myocytes at four days in vitro (4 DIV), intracellular Ca2+ oscillations were synchronized with each other. The simultaneous measurement of the concentration of extracellular ATP and intracellular Ca2+ revealed the extracellular concentration of ATP actually oscillated concurrently with the intracellular Ca2+ oscillation. In addition, power spectrum and cross-correlation analyses suggested that the treatment of cultured cardiac myocytes with suramin, a blocker of P2 purinoceptors, resulted in the asynchronization of Ca2+ oscillatory rhythms among cardiac myocytes. Treatment with suramin also resulted in a significant decrease in the amplitudes of the cyclic changes in both intracellular Ca2+ and extracellular ATP. Taken together, the present study demonstrated the possibility that the concentration of extracellular ATP changes cyclically in association with intracellular Ca2+, contributing to the intercellular synchronization of Ca2+ oscillation among cultured cardiac myocytes.  相似文献   
4.
Glioblastoma multiforme (GBM), the most common and aggressive brain tumor in humans, comprises a population of stem-like cells (GSCs) that are currently investigated as potential target for GBM therapy. Here, we used GSCs isolated from three different GBM surgical specimens to examine the antitumor activity of purines. Cultured GSCs expressed either metabotropic adenosine P1 and ATP P2Y receptors or ionotropic P2X7 receptors. GSC exposure for 48 h to 10–150 μM ATP, P2R ligand, or to ADPβS or MRS2365, P2Y1R agonists, enhanced cell expansion. This effect was counteracted by the PY1R antagonist MRS2500. In contrast, 48-h treatment with higher doses of ATP or UTP, which binds to P2Y2/4R, or 2′(3′)-O-(4-benzoylbenzoyl)-ATP (Bz-ATP), P2X7R agonist, decreased GSC proliferation. Such a reduction was due to apoptotic or necrotic cell death but mostly to growth arrest. Accordingly, cell regrowth and secondary neurosphere formation were observed 2 weeks after the end of treatment. Suramin, nonselective P2R antagonist, MRS1220 or AZ11645373, selective A3R or P2X7R antagonists, respectively, counteracted ATP antiproliferative effects. AZ11645373 also abolished the inhibitory effect of Bz-ATP low doses on GSC growth. These findings provide important clues on the anticancer potential of ligands for A3R, P2Y1R, and P2X7R, which are involved in the GSC growth control. Interestingly, ATP and BzATP potentiated the cytotoxicity of temozolomide (TMZ), currently used for GBM therapy, enabling it to cause a greater and long-lasting inhibitory effect on GSC duplication when readded to cells previously treated with purine nucleotides plus TMZ. These are the first findings identifying purine nucleotides as able to enhance TMZ antitumor efficacy and might have an immediate translational impact.  相似文献   
5.
A monoclonal antibody was developed to the extracellular domain of the rat P2X4 receptor. The antibody was highly selective among all rat P2X receptor subunits, and recognised only the oligomeric, non-denatured form of the P2X4 receptor. Immunohistochemistry showed an extensive pattern of distribution throughout the central and peripheral nervous systems, the epithelia of ducted glands and airways, smooth muscle of bladder, gastrointestinal tract, uterus, and arteries, uterine endometrium and fat cells. The protein was identified by Western blotting in membrane extracts of these tissues, and the ectodomain antibody immunoprecipitated a protein that was recognised with a P2X4 receptor C terminus antibody. The findings indicate that the P2X4 receptor subunit has a very extensive distribution among mammalian tissues, and this suggests possible new functional roles.The work was supported by the Wellcome Trust (R.S., R.A.N.) and the British Heart Foundation (G.B.)  相似文献   
6.
We report here the structural and functional characterization of an ionotropic P2X ATP receptor from the lower vertebrate zebrafish (Danio rerio). The full-length cDNA encodes a 410-amino acid-long channel subunit zP2X(3), which shares only 54% identity with closest mammalian P2X subunits. When expressed in XENOPUS: oocytes in homomeric form, ATP-gated zP2X(3) channels evoked a unique nonselective cationic current with faster rise time, faster kinetics of desensitization, and slower recovery than any other known P2X channel. Interestingly, the order of agonist potency for this P2X receptor was found similar to that of distantly related P2X(7) receptors, with benzoylbenzoyl ATP (EC(50) = 5 microM) > ATP (EC(50) = 350 microM) = ADP > alpha,beta-methylene ATP (EC(50) = 480 microM). zP2X(3) receptors are highly sensitive to blockade by the antagonist trinitrophenyl ATP (IC(50) < 5 nM) but are weakly sensitive to the noncompetitive antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid. zP2X(3) subunit mRNA is exclusively expressed at high levels in trigeminal neurons and Rohon-Beard cells during embryonic development, suggesting that neuronal P2X receptors mediating fast ATP responses were selected early in the vertebrate phylogeny to play an important role in sensory pathways.  相似文献   
7.
Yuan K  Bai GY  Park WH  Kim SZ  Kim SH 《Peptides》2008,29(12):2216-2224
Adenosine is a potent mediator of myocardial protection against hypertrophy via A(1) or A(3) receptors that may be partly related to atrial natriuretic peptide (ANP) release. However, little is known about the possible involvement of the A(3) receptor on ANP release. We studied the effects of the A(3) receptor on atrial functions and its modification in hypertrophied atria. A selective A(3) receptor agonist, 2-chloro-N(6)-(3-iodobenzyl) adenosine-5'-N-methyluronamide (2-CI-IB-MECA), was perfused into isolated, beating rat atria with and without receptor modifiers. 2-CI-IB-MECA dose-dependently increased the ANP secretion, which was blocked by the A(3) receptor antagonist, but the increased atrial contractility and decreased cAMP levels induced by 30muM 2-CI-IB-MECA were not affected. The 100muM 2-(1-hexylnyl)-N-methyladenosine (HEMADO) and N(6)-(3-iodobenzyl) adenosine-5'-N-methyluronamide (IB-MECA), A(3) receptor agonist, also stimulated the ANP secretion without positive inotropy. The potency for the stimulation of ANP secretion was 2-CI-IB-MECA>IB-MECA=HEMADO. The inhibition of the ryanodine receptor or calcium/calmodulin-dependent kinase II (CaMKII) attenuated 2-CI-IB-MECA-induced ANP release, positive inotropy, and translocation of extracellular fluid. However, the inhibition of L-type Ca(2+) channels, sarcoplasmic reticulum Ca(2+)-reuptake, phospholipase C or inositol 1,4,5-triphosphate receptors did not affect these parameters. 2-CI-IB-MECA decreased cAMP level, which was blocked only with an inhibitor of CaMKII or adenylyl cyclase. These results suggest that 2-CI-IB-MECA increases the ANP secretion mainly via A(3) receptor activation and positive inotropy by intracellular Ca(2+) regulation via the ryanodine receptor and CaMKII.  相似文献   
8.
Among the cells of the inner ear, the outer hair cells (OHCs) are the most important targets of noise-induced effects, being the most sensitive cell types. The aim of this study was to examine the effects of noise (50 Hz-20 kHz, 80 dB sound pressure level, 14 days) on intracellular calcium levels and on the expression pattern of purinoceptors in the membrane of the OHCs of the guinea pig and to measure the stiffness changes of the lateral membrane of these cells. In noise-exposed animals, the resting intracellular calcium concentration increased compared to nontreated animals and was slightly higher in the cells of the basal (219 ± 29 nM) than in the apical (181 ± 24 nM) turns of the cochlea. After application of 180 μM adenosine triphosphate, the intracellular calcium level rose by 60 ± 22 nM in cells from the apical and by 44 ± 10 nM in cells from the basal turns, significantly less than in nontreated animals. Expression of the P2X1, P2X2, P2X4, P2X7, P2Y1 and P2Y4 receptor subtypes was suppressed, while expression of the P2Y2 subtype did not decrease in either of the two preparations. In parallel with the increase in intracellular calcium concentration, the stiffness of the lateral wall of the OHCs was increased. Noise-induced changes in intracellular calcium homeostasis and subsequently in the calcium-dependent regulatory mechanisms may modify OHC lateral wall stiffness and may lead to reduction of the efficacy of the cochlear amplifier.  相似文献   
9.
With single- and double-labeling immunofluorescence techniques, the distribution patterns and morphological characteristics of P2X2- and P2X3-immunoreactive nerve fiber terminals and neuronal bodies have been studied in the main circulatory system baroreceptors and the nodose and petrosal ganglia of rats. A high density of P2X2- and P2X3-immunoreactive nerve fiber terminals was detected in the carotid sinus. P2X2- and P2X3-immunoreactive nerve fiber terminals were also distributed widely in the aortic arch, atrium, vena cava, and ventricles. Almost all the P2X2-immunoreactive nerve fiber terminals were immunoreactive for P2X3 receptors. P2X2- and P2X3-immunoreactive neuronal bodies were also detected in the nodose and petrosal ganglia, which are the sources of the P2X2- and P2X3-immunoreactive nerve terminals. P2X2 and P2X3 receptors were expressed in the same ganglionic neurons. These data indicate that extracellular ATP, via the homomeric P2X2 and P2X3 receptors, and heteromeric P2X2/3 receptor in the sensory receptors of carotid sinus, aortic arch, atrium, and vena cava, may be involved in the regulation of systematic circulation blood pressure.  相似文献   
10.
In the isolated Agama lizard aorta, acetylcholine (ACh; 3 nM-100 microM), noradrenaline (NA; 30 nM-0.3 mM), adrenaline (Adr; 30 nM-300 microM), adenosine 5'-triphosphate (ATP; 30 nM-1 mM), alpha,beta-methylene ATP (alpha,beta-meATP; 10 nM-10 microM), beta,gamma-methylene ATP (beta,gamma-meATP; 0.1-300 microM), 2-methylthio ATP (2-meSATP; 30 nM-30 microM) and high concentrations of uridine triphosphate (UTP; 1 microM-1 mM), all produced constriction. The P2 receptor antagonists pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS; 30 microM), suramin (0.1 mM) and Reactive blue 2 (30 microM) all raised vascular tone and could not be utilized and the antagonist 2'-O-(trinitrophenyl) ATP (TNP-ATP; 0.1 microM) had no effect on responses to the ATP analogues. alpha,beta-MeATP (3 microMx3) desensitised responses to alpha,beta-meATP (10 microM) and beta,gamma-meATP (0.3 mM), but not to ATP (0.3 mM) or 2-meSATP (30 microM). On pre-constricted aorta (EC50 concentration of either ACh or Adr), adenosine (1 microM-1 mM), the A1-selective agonist N6-cyclopentyl adenosine (CPA; 1-300 microM) [but not the A2- and A3-selective agonists CGS 21680 and IB-MECA respectively (both up to 30 microM)] and sodium nitroprusside (10 nM-100 microM) produced vasodilatation. Adenosine vasodilatation was antagonised by 8-p-sulfophenyl-theophylline (8-pSPT; 30 microM) but not by N(omega)-nitro-L-arginine methyl ester (L-NAME; 0.1 mM). ATP (up to 0.3 mM), 2-meSATP (up to 10 microM) and UTP (up to 1 mM) were not vasodilators. In summary, A1 receptors mediating relaxation and excitatory P2X1 receptors were identified in the smooth muscle of the lizard aorta. However, in contrast to mammalian aorta, P2Y receptors on endothelial cells mediating vasodilatation via nitric oxide do not appear to be present.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号