首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3725篇
  免费   228篇
  国内免费   360篇
  2024年   12篇
  2023年   81篇
  2022年   137篇
  2021年   158篇
  2020年   131篇
  2019年   144篇
  2018年   145篇
  2017年   128篇
  2016年   116篇
  2015年   157篇
  2014年   218篇
  2013年   349篇
  2012年   165篇
  2011年   208篇
  2010年   158篇
  2009年   171篇
  2008年   185篇
  2007年   141篇
  2006年   138篇
  2005年   134篇
  2004年   131篇
  2003年   106篇
  2002年   101篇
  2001年   74篇
  2000年   56篇
  1999年   71篇
  1998年   54篇
  1997年   54篇
  1996年   66篇
  1995年   50篇
  1994年   38篇
  1993年   38篇
  1992年   41篇
  1991年   37篇
  1990年   31篇
  1989年   15篇
  1988年   22篇
  1987年   22篇
  1986年   20篇
  1985年   31篇
  1984年   50篇
  1983年   27篇
  1982年   29篇
  1981年   16篇
  1980年   17篇
  1979年   10篇
  1978年   7篇
  1977年   9篇
  1976年   5篇
  1974年   4篇
排序方式: 共有4313条查询结果,搜索用时 171 毫秒
1.
Conjugational transfer of pLS20 in Bacillus subtilis Marburg 168 is restricted by the BsuM restriction-modification system. Restriction efficiency was measured using pLS20 derivatives possessing various numbers of XhoI sites, which are known to be recognized by BsuM. An increase in XhoI sites clearly reduced the conjugational efficiency of pLS20 as compared with that of pUB110 plasmid lacking XhoI.  相似文献   
2.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
3.
以半矮秆育种为代表的“绿色革命”极大地提高了作物产量,但也带来氮营养利用效率降低的严重问题。“绿色革命”主要基于调控赤霉素的代谢和信号转导而实现。前期的研究发现,赤霉素信号转导关键因子DELLA蛋白通过调控GRF4而负调控氮素的吸收利用,为半矮秆品系氮利用效率低的问题提供了解决方案。最近的一项研究进一步揭示了GA信号途径与氮响应交叉互作的新机制。该研究发现水稻(Oryza sativa)NGR5是氮素调控分蘖数目的一个关键基因,其表达受氮诱导。通过招募PRC2,NGR5对D14和OsSPL14等分蘖抑制基因所在位点进行H3K27me3甲基化修饰,从而抑制其表达。而在半矮秆背景下超表达NGR5可以提高低氮水平下的水稻产量。NGR5同时也被发现为赤霉素受体GID1的一个新靶标,受到其负调控。该研究发现了调控赤霉素信号通路的新机制,并对高产高效的新一代“绿色革命”育种实践具有重要启示。  相似文献   
4.
Studies with substrate analogues and the pH optimum indicated the involvement of carboxyl group in the active site of goat carboxypeptidase A. Chemical modification of the enzyme with 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide methoI -p-toluene sulphonate, a carboxyl specific reagent, led to loss of both esterase and peptidase activities. Protection studies showed that this carboxyl group was in the active site and was protected by Βp-phenylpropionic acid and glycyl-L-tyrosine. Kinetic studies also confirmed the involvement of carboxylic group because the enzyme modification with water soluble carbodiimide was a two step reaction which excluded the possibility of tyrosine or lysine which are known to give a one step reaction with this reagent  相似文献   
5.
The binding of pentaammineruthenium (III) to ribonuclease A and B both free and complexed with d(pA)4 has been examined in the crystalline state through the application of X-ray diffraction and difference Fourier techniques. In crystals of native RNase B, the reagent was observed to have many binding sites, some entirely electrostatic in nature and others consistent with coordination to histidine residues. The primary histidine in the latter case was 105 with 119 also partially substituted. In crystals of RNase A+d(pA)4 complex only a single, extremely strong site of substitution was observed, and this was 2.4 Å from the native position of the imidazole ring of histidine 105. Thus, the results of these X-ray diffraction studies appear to be quite consistent with the findings of earlier NMR studies and with the results obtained in crystals of the gene 5 DNA binding protein.  相似文献   
6.
《Fungal biology》2020,124(1):65-72
This review deals with characteristics of peptidases of fungi whose life cycles are associated with insects to varying degrees. The review examines the characteristic features of the extracellular peptidases of entomopathogenic fungi, the dependence of the specificity of these peptidases on the ecological characteristics of the fungi, and the role of peptidases in the development of the pathogenesis. Data on the properties and physiological role of hydrolytic enzymes of symbiotic fungi in “fungal gardens” are also considered in detail. For the development of representations about mechanisms of control over populations of insect pests, special attention is given to analysis of possibilities of genetic engineering for the creation of entomopathogens with enhanced virulence. Clarification of the role of fungi and their secreted enzymes and careful environmental studies are still required to explain their significance in the composition of the biota and to ensure widespread adoption of these organisms as effective biological control agents. The systematization and comparative analysis of the existing data on extracellular peptidases of insect-associated fungi will help in the planning of further work and the search for markers of pathogenesis and symbiosis.  相似文献   
7.
Horseradish peroxidase was chemically conjugated on its carbohydrate moieties with short aliphatic chains (C8 and C16). An analytical method using FT.IR spectroscopy was developed to analyze this alteration in enzyme structure. This method is non-destructive, and can be applied directly to samples of the reaction mixture. More general applications of this technique are described and discussed.  相似文献   
8.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   
9.
Four minireviews deal with aspects of the α-ketoglutarate/iron-dependent dioxygenases in this eighth Thematic Series on Metals in Biology. The minireviews cover a general introduction and synopsis of the current understanding of mechanisms of catalysis, the roles of these dioxygenases in post-translational protein modification and de-modification, the roles of the ten-eleven translocation (Tet) dioxygenases in the modification of methylated bases (5mC, T) in DNA relevant to epigenetic mechanisms, and the roles of the AlkB-related dioxygenases in the repair of damaged DNA and RNA. The use of α-ketoglutarate (alternatively termed 2-oxoglutarate) as a co-substrate in so many oxidation reactions throughout much of nature is notable and has surprisingly emerged from biochemical and genomic analysis. About 60 of these enzymes are now recognized in humans, and a number have been identified as having critical functions.  相似文献   
10.
Binding of gossypol by gossypin and congossypin and their succinylated and sulfhydryl group-blocked derivatives has been measured. The binding by gossypin and congossypin is characterized by weak interaction. Succinylation of gossypin decreases the binding affinity whereas that of congossypin increases it. Blocking of sulfhydryl groups of both the proteins does not significantly affect gossypol binding, Succinylation dissociates gossypin and causes conformational changes whereas it does not dissociate congossypin but causes conformational changes. Sulfhydryl group blocking does not dissociate gossypin or congossypin, nor does it cause any conformational changes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号