首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   471篇
  免费   12篇
  国内免费   3篇
  486篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   19篇
  2013年   19篇
  2012年   15篇
  2011年   30篇
  2010年   29篇
  2009年   30篇
  2008年   23篇
  2007年   22篇
  2006年   22篇
  2005年   28篇
  2004年   25篇
  2003年   25篇
  2002年   13篇
  2001年   4篇
  2000年   9篇
  1999年   8篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1992年   4篇
  1991年   9篇
  1990年   10篇
  1989年   8篇
  1988年   6篇
  1987年   6篇
  1986年   2篇
  1985年   7篇
  1984年   11篇
  1983年   4篇
  1982年   9篇
  1981年   1篇
  1980年   2篇
  1979年   14篇
  1978年   3篇
  1973年   1篇
排序方式: 共有486条查询结果,搜索用时 0 毫秒
1.
Free radical mechanisms in enzyme reactions   总被引:1,自引:0,他引:1  
Free radicals are formed in prosthetic groups or amino acid residues of certain enzymes. These free radicals are closely related to the activation process in enzyme catalysis, but their formation does not always result in the formation of substrate free radicals as a product of the enzyme reactions. The role of free radicals in enzyme catalysis is discussed.  相似文献   
2.
Arachidonic acid is transiently accumulated in the brain as a result of a variety of pathological conditions. The synthesis and release of some of its metabolites, namely, prostaglandin E2 (PGE2), thromboxane B2 (TXB2), and 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) from cortical slices of mice were studied following exposure to 6 min of hypoxia (7% O2), 45 s of anoxia, and 5 min-4 h of reoxygenation following anoxia. Hypoxia induced a slight increase in the rate of TXB2 release and a slight decrease in the rate of PGE2 release, whereas 6-keto-PGF1 alpha was unaffected. Anoxia (45 s) followed by reoxygenation induced a transient increase in the release of PGE2 and of 6-keto-PGF1 alpha with a return to the normal rate at 30 min and 2 h of recovery, respectively. However, the rate of TXB2 synthesis and release reached its peak (twofold increase) after 1 h and remained significantly higher than the control rate even after 4 h of normal air breathing. Our results demonstrate that hypoxia and anoxia, even of short duration, selectively trigger the activity of thromboxane synthetase and that this elevated rate of synthesis and release persists long after normal oxygen supply is restored. We suggest that enhanced thromboxane synthesis, with normal prostacyclin levels, might have a role in the pathophysiology of ischemic cell damage.  相似文献   
3.
The effect of steroid hormones on the prostaglandin E1 (PGE1)-mediated cyclic AMP formation by murine neuroblastoma clone N1E-115 was studied. Dexamethasone at submicromolar concentrations and corticosterone at micromolar concentrations (steroids with glucocorticoid activity) were able to modify the PGE1-mediated response whereas testosterone, progesterone, and estradiol each at 10 microM had no effect. Glucocorticoids added to the culture medium of N1E-115 cells produced an increase in the maximal response to PGE1 only after long-term (greater than or equal to 4 h) incubation with the hormone. Inhibitors of protein and RNA synthesis blocked this effect of glucocorticoids. Basal activity of adenylate cyclase in treated cells was twofold higher than that in control cells, and this enzyme seemed to be the primary target for the hormone action, since the activity of 3':5'-cyclic AMP phosphodiesterase and the binding of [3H]PGE1 to its receptors were not altered by glucocorticoid treatment. Our results indicate that glucocorticoids modulate receptor-mediated responses in cells of neural origin through a mechanism that involves induction of protein synthesis.  相似文献   
4.
5.
Abstract: Prostaglandin E2 (PGE2) delivered to the spinal cord produces an increased sensitivity to noxious (hyperalgesia) and innocuous (allodynia) stimuli. The mechanisms that underlie this effect remain unknown, but a PGE2-evoked enhancement of spinal neurotransmitter release may be involved. To address this hypothesis, we examined the effect of PGE2 on CSF concentrations of amino acids and also the modulatory effect of PGE2 on capsaicin-evoked changes of spinal amino acid concentrations using a microdialysis probe placed in the lumbar subarachnoid space. Amino acids were quantified using HPLC with fluorescence detection. Addition of 1 mM, but not 10 or 100 µM, PGE2 to the perfusate for a 10-min period (flow rate, 5 µl/min) evoked an immediate increase (80–100%) in glutamate (Glu), aspartate (Asp), taurine (Tau), glycine (Gly), and γ-aminobutyric acid (GABA) concentrations. Similarly, capsaicin infusion (0.1–10 µM) induced a dose-dependent increase in Glu, Asp, Tau, Gly, GABA, and ethanolamine levels. Significant increases in amino acid levels evoked by PGE2 or capsaicin were associated with a touch-evoked allodynia. The combination of PGE2 (10 µM) and capsaicin (0.1 or 1.0 µM) at concentrations that individually had no effect together evoked a significant increase (60–100%) in Glu, Asp, Tau, Gly, and GABA concentrations and produced tactile allodynia. These data demonstrate that spinally delivered PGE2 or capsaicin substantially elevates CSF concentrations of both excitatory and inhibitory amino acids. The capacity of PGE2 to enhance and prolong capsaicin-evoked amino acid concentrations may be one of the mechanisms by which spinal PGE2 produces hyperalgesia and allodynia.  相似文献   
6.
Repeated administration of prostaglandin is the treatment of choice for the termination of pregnancy in mares more than 40 days pregnant. Even though it is well documented that PGF-2 or analogue needs to be administered every 12–24 h for successful induction of abortion, little is known about the underlying endocrine changes and the mechanism by which abortion occurs. The aim of this study was to characterize the changes in PGF-2, progesterone and estrogen secretion during prostaglandin-induced abortion. Six mares, 82–102 days pregnant, were treated daily with 250 μg cloprostenol, blood was collected at 1-h intervals until fetal expulsion and pregnancy examination was performed daily. Four mares, 92–97 days pregnant, received no treatment but were subjected to the same hourly blood collections and daily genital examinations described for cloprostenol-treated mares for 3 days. Mean time from first cloprostenol administration until fetal expulsion was 48.6 ± 5.6 h and required 2.8 ± 0.2 cloprostenol administrations. In all mares, progesterone concentrations decreased in a near linear manner after the first cloprostenol administration and were invariably low (1.3 ± 0.2 ng ml−1, mean ± SEM) at the time of fetal expulsion. Mean estrogen secretion remained unchanged until 5 h before fetal expulsion and then decreased rapidly to non-pregnant levels. Endogenous PGF-2 secretion rate increased with each cloprostenol administration and culminated in sustained PGF-2 secretion which persisted until fetal expulsion was completed. From these results we conclude that cloprostenol-induced abortion is associated with endogenous PGF-2 secretion, fetal expulsion coincides with sustained PGF-2 secretion and low progesterone concentrations and plasma estrogen concentrations remain unchanged until hours before fetal expulsion.  相似文献   
7.
8.
The activity of alkaline phosphate and2+-Mg2+ adenosine triphosphatase, two of the enzymes involved in limpid and calcium uptake across the intestinal membrane, were increased in experimental atherosclerosis. Administration ofAnnapavala sindhooram, an antiatherosclerotic drug, lowers these enzyme levels to near normal values. Prostaglandin E2 stimulated the enzyme activitiesin vitro, while prostaglandin endoperoxide inhibited the activity. Thromboxane and other prostaglandins had no effect on the enzyme activities. Addition of the antiatherosclerotic drug to thein vitro assay system reversed the effect of both prostaglandin E2 and prostaglandin endoperoxide.  相似文献   
9.
Prostaglandin E1 (PGE1)-mediated transmembrane signal control systems were investigated in intact murine neuroblastoma cells (clone N1E-115). PGE1 increased intracellular levels of total inositol phosphates (IP), cyclic GMP, cyclic AMP, and calcium ([Ca2+]i). PGE1 transiently increased inositol 1,4,5-trisphosphate formation, peaking at 20 s. There was more than a 10-fold difference between the ED50 for PGE1 at cyclic AMP formation (70 nM) and its ED50 values at IP accumulation (1 microM), cyclic GMP formation (2 microM), and [Ca2+]i increase (5 microM). PGE1-mediated IP accumulation, cyclic GMP formation, and [Ca2+]i increase depended on both the concentration of PGE1 and extracellular calcium ions. PGE1 had more potent intrinsic activity in cyclic AMP formation, IP accumulation, and cyclic GMP formation than did PGE2, PGF2 alpha, or PGD2. A protein kinase C activator, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate, had opposite effects on PGE1-mediated IP release and cyclic GMP formation (inhibitory) and cyclic AMP formation (stimulatory). These data suggest that there may be subtypes of the PGE1 receptor in this clone: a high-affinity receptor mediating cyclic AMP formation, and a low-affinity receptor mediating IP accumulation, cyclic GMP formation, and intracellular calcium mobilization.  相似文献   
10.
Stimulation of prostaglandin (PG) release in rat astroglial cultures by various substances, including phorbol esters, melittin, or extracellular ATP, has been reported recently. It is shown here that glucocorticoids (GCs) reduced both basal and stimulated PGD2 release. Hydrocortisone, however, did not inhibit ATP-, calcium ionophore A23187-, or tetradecanoyl phorbol acetate (TPA)-stimulated arachidonic acid release, and only TPA stimulations were affected by dexamethasone. GC-mediated inhibition of PGD2 release thus appeared to exclude regulation at the phospholipase A2 (PLA2) level. Therefore, the effects of GCs on the synthesis of lipocortin I (LC I), a potent, physiological inhibitor of PLA2, were studied in more detail. Dexamethasone was not able to enhance de novo synthesis of LC I in freshly seeded cultures and failed to increase LC I synthesis in 2-3-week-old cultures. It is surprising that LC I was the major LC synthesized in those cultures, and marked amounts accumulated with culture time, reaching plateau levels at approximately day 10. In contrast, LC I was barely detectable in vivo. This tonic inhibition of PLA2 is the most likely explanation for unsuccessful attempts to evoke PG release in astrocyte cultures by various physiological stimuli. GC receptor antagonists (progesterone and RU 38486) given throughout culture time reduced LC I accumulation and simultaneously increased PGD2 release. Nonetheless, a substantial production of LC I persisted in the presence of antagonists. Therefore, LC I induction did not seem to involve GC receptor activation. This was confirmed in serum- and GC-free brain cell aggregate cultures. Here also a marked accumulation of LC I was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号