首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   1篇
  2019年   5篇
  2018年   5篇
  2017年   3篇
  2014年   4篇
  2013年   16篇
  2012年   1篇
  2011年   3篇
  2009年   5篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  1997年   1篇
  1994年   1篇
  1982年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
Naproxen (nap) is belonging to Non-steriodal anti-inflammatory drugs (NSAIDs) group of drugs that characterized by their free carboxylic group. The therapeutic activity of nap is usually accompanied by GI untoward side effects. Recently synthesized naproxen amides of some amino acid esters prodrugs to mask the free carboxylic group were reported. Those prodrugs showed a promising colorectal cancer chemopreventive activity. The current study aims to investigate the fate and hydrolysis of the prodrugs kinetically in different pH conditions, simulated gastric and intestinal fluids with pHs of 1.2, 5.5 and 7.4 in vitro at 37 °C. The effect of enzymes on the hydrolysis of prodrugs was also studied through incubation of these prodrugs at 37 °C in human plasma and rat liver homogenates. The pharmacokinetic parameters of selected prodrugs and the liberated nap were studied after oral and intraperitoneal administration in male wistar rats. The results showed the hydrolysis of naproxen amides of amino acid esters to nap through two steps first by degradation of the ester moiety to form the amide of nap with amino acid and the second was through the degradation of the amide link to liberate nap. The two reactions were followed and studied kinetically where K1 and K2 (rate constants of degradation) is reported. The hydrolysis of prodrugs was faster in liver homogenates than in plasma. The relative bioavailability of the liberated nap in vivo was higher in case of prodrug containing ethyl glycinate moiety than that occupied l-valine ethyl ester moiety. Each of nap. prodrugs containing ethyl glycinate and l-valine ethyl ester moieties appears promising in liberating nap, decreasing direct GI side effect and consequently their colorectal cancer chemopreventive activity.  相似文献   
2.
Nucleoside phosphotransferase acting on inosine and deoxyinosine has been partially purified from cultured Chinese hamster lung fibroblasts (V79). The activity is associated with a cytosolic 5′-nucleotidase acting on IMP and deoxyIMP. The transfer of the phosphate group from IMP to inosine catalyzed by this enzyme was activated by ATP and 2,3-bisphosphoglycerate. Inosine, deoxyinosine, guanosine, deoxyguanosine, and the nucleoside analogs 2′,3′-dideoxyinosine and 8-azaguanosine are substrates, while adenosine and deoxyadenosine are not. IMP, deoxyIMP, GMP, and deoxyGMP are the best phosphate donors. The cytosolic 5′-nucleotidase/phosphotransferase substrate, 8-azaguanosine, was found to be very toxic for cultured fibroblasts (LD50 = 0.32 μM). Mutants resistant to either 8-azaguanosine and the correspondent base 8-azaguanine were isolated and characterized. Our results indicated that the 8-azaguanosine-resistant cells were lacking both cytosolic 5′-nucleotidase and hypoxanthine-guanine phosphoribosyltransferase, while 8-azaguanine resistant cells were lacking only the latter enzyme. Despite this observation, both mutants displayed 8-azaguanosine resistance, thus indicating that cytosolic 5′-nucleotidase is not essential for the activation of this nucleoside analog.  相似文献   
3.
In order to improve the oral bioavailability of 2′-C-methylcytidine, a potent anti-HCV agent, the corresponding 3′-O-L-valinyl ester derivative (NM 283) has been synthesized. Based on its ease of synthesis and its physicochemical properties, NM 283 has emerged as a promising antiviral drug for treatment of chronic HCV infection.  相似文献   
4.
We report in this Letter the synthesis of prodrugs of 2-fluoro-2-deoxyarabinose-1-phosphate and 2,2-difluoro-2-deoxyribose-1-phosphate. We demonstrate the difficulty of realising a phosphorylation step on the anomeric position of 2-deoxyribose, and we discover that introduction of fluorine atoms on the 2 position of 2-deoxyribose enables the phosphorylation step: in fact, the stability of the prodrugs increases with the degree of 2-fluorination. Stability studies of produgs of 2-fluoro-2-deoxyribose-1-phosphate and 2,2-difluoro-2-deoxyribose-1-phosphate in acidic and neutral conditions were conducted to confirm our observation. Biological evaluation of prodrugs of 2,2-difluoro-2-deoxyribose-1-phosphate for antiviral and cytotoxic activity is reported.  相似文献   
5.
A series of carbamoylmethylene linked prodrugs of 1 (BMS-582949), a clinical p38α inhibitor, were synthesized and evaluated. Though the phosphoryloxymethylene carbamates (3, 4, and 5) and α-aminoacyloxymethylene carbamates (22, 23, and 26) were found unstable at neutral pH values, fumaric acid derived acyloxymethylene carbamates (2, 28, and 31) were highly stable under both acidic and neutral conditions. Prodrugs 2 and 31 were also highly soluble at both acidic and neutral pH values. At a solution dose of 14.2 mpk (equivalent to 10 mpk of 1), 2 gave essentially the same exposure of 1 compared to dosing 10 mpk of 1 itself. At a suspension dose of 142 mpk (equivalent to 100 mpk of 1), 2 demonstrated that it could overcome the solubility issue associated with 1 and provide a much higher exposure of 1. To our knowledge, the unique type of prodrugs like 2, 28, and 31 was not reported in the past and could represent a novel prodrug approach for secondary amides, a class of molecules frequently identified as drug candidates.  相似文献   
6.
A new oxazole scaffold showing great promise in HIV-1 inhibition has been discovered by cell-based screening of an in-house library and scaffold modification. Follow-up SAR study focusing on the 5-aryl substituent of the oxazole core has identified 4k (EC50 = 0.42 μM, TI = 50) as a potent inhibitor. However, the analogues suffered from poor aqueous solubility. To address this issue, we have developed broadly applicable potential prodrugs of indazoles. Among them, N-acyloxymethyl analogue 11b displayed promising results (i.e., increased aqueous solubility and susceptibility to enzymatic hydrolysis). Further studies are warranted to fully evaluate the analogues as the potential prodrugs with improved physiochemical and PK properties  相似文献   
7.
Wang S  Liu D  Zhang X  Li S  Sun Y  Li J  Zhou Y  Zhang L 《Carbohydrate research》2007,342(9):1254-1260
Eight novel toxoflavin glycosides, which are potential prodrugs in antibody directed enzyme prodrug therapy (ADEPT), were synthesized. The structures of all toxoflavin glycosides were characterized by (13)C NMR spectroscopy, elemental analysis, and MS. Their enzymatic hydrolysis activities were tested against beta-glucosidase (EC.3.2.1.21).  相似文献   
8.
In epidemiology and human supplementation studies, as well as many animal models, selenium has shown antitumorigenic activity. The mechanism of action, however, has not been satisfactorily resolved. Selenium supplementation affects many enzymes in addition to those where selenocysteine is an essential component. Such enzymes include cytoprotective detoxifying enzymes, and the regulation of these enzymes by a set of 2-substituted selenazolidine-4(R)-carboxylic acids (SCAs) has been investigated. Following seven consecutive daily doses of these prodrugs of L-selenocysteine, changes in hepatic enzyme activities and/or mRNA levels of glutathione transferase (GST), microsomal epoxide hydrolase (mEH), NAD(P)H-quinone oxidoreductase (NQO), UDP-glucuronosyltransferase (UGT), glutathione peroxidase (GPx), and thioredoxin reductase (TR) have been observed. Among the enzymes examined, UGTs and GPx were found to be the least affected. Among the compounds, 2-oxoSCA produced the most changes and 2-phenylSCA produced the least, none. For no two compounds was the pattern of changes identical, and for a single compound, few changes were reproduced in common by the two routes of administration investigated. In general, more changes were elicited following intraperitoneal (i.p.) administration than with the intragastric (i.g.) route. This dominance was typified by 2-butylSCA and 2-cyclohexylSCA where enzyme activity elevations (TR and mEH with both, NQO with 2-butylSCA) were seen only with the i.p. route. With 2-oxoSCA, however, GST, TR, and NQO activities were found to be elevated independent of route. Only with GST (both routes) and TR (i.p. route), elevations in mRNAs accompanied the 2-oxoSCA elicited elevations of activities at the time of sacrifice. For some enzymes, most notably mEH with compounds administered i.p., elevations in mRNAs were not manifest as increased enzyme activity. Thus, although constituting a closely related series of compounds, each 2-substituted SCA produced its own unique pattern of changes, and for most members, changes were predominant following i.p. administration.  相似文献   
9.
Fully protected pA2′p5′A2′p5′A trimers 1a and 1b have been prepared as prodrug candidates for a short 2′‐5′ oligoadenylate, 2‐5A, and its 3′‐O‐Me analog, respectively. The kinetics of hog liver carboxyesterase (HLE)‐triggered deprotection in HEPES buffer (pH 7.5) at 37° has been studied. The deprotection of 1a turned out to be very slow, and 2‐5A never appeared in a fully deprotected form. By contrast, a considerable proportion of 1b was converted to the desired 2‐5A trimer, although partial removal of the 3′‐O‐[(acetyloxy)methyl] group prior to exposure of the adjacent phosphodiester linkage resulted in 2′,5′→3′,5′ phosphate migration and release of adenosine as side reactions.  相似文献   
10.
Protected dinucleoside‐2′,5′‐monophosphate has been prepared to develop a prodrug strategy for 2‐5A. The removal of enzymatically and thermally labile 4‐(acetylthio)‐2‐(ethoxycarbonyl)‐3‐oxo‐2‐methylbutyl phosphate protecting group and enzymatically labile 3′‐O‐pivaloyloxymethyl group was followed at pH 7.5 and 37 °C by HPLC from the fully protected dimeric adenosine‐2′,5′‐monophosphate 1 used as a model compound for 2‐5A. The desired unprotected 2′,3′‐O‐isopropylideneadenosine‐2′,5′‐monophosphate ( 9 ) was observed to accumulate as a major product. Neither the competitive isomerization of 2′,5′‐ to a 3′,5′‐linkage nor the P–O5′ bond cleavage was detected. The phosphate protecting group was removed faster than the 3′‐O‐protection and, hence, the attack of the neighbouring 3′‐OH on phosphotriester moiety did not take place.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号