首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1121篇
  免费   14篇
  国内免费   34篇
  1169篇
  2023年   3篇
  2022年   5篇
  2021年   3篇
  2020年   6篇
  2019年   14篇
  2018年   7篇
  2017年   14篇
  2016年   4篇
  2015年   13篇
  2014年   61篇
  2013年   62篇
  2012年   66篇
  2011年   76篇
  2010年   89篇
  2009年   41篇
  2008年   46篇
  2007年   56篇
  2006年   58篇
  2005年   30篇
  2004年   33篇
  2003年   35篇
  2002年   21篇
  2001年   8篇
  2000年   20篇
  1999年   29篇
  1998年   17篇
  1997年   30篇
  1996年   14篇
  1995年   22篇
  1994年   35篇
  1993年   27篇
  1992年   19篇
  1991年   18篇
  1990年   14篇
  1989年   14篇
  1988年   8篇
  1987年   10篇
  1986年   18篇
  1985年   20篇
  1984年   19篇
  1983年   10篇
  1982年   20篇
  1981年   13篇
  1980年   15篇
  1979年   14篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1973年   2篇
  1970年   1篇
排序方式: 共有1169条查询结果,搜索用时 15 毫秒
1.
The voltage-gated K+ (Kv) channel blocker 4-aminopyridine (4-AP) is used to target symptoms of the neuroinflammatory disease multiple sclerosis (MS). By blocking Kv channels, 4-AP facilitates action potential conduction and neurotransmitter release in presynaptic neurons, lessening the effects of demyelination. Because they conduct inward Na+ and Ca2+ currents that contribute to axonal degeneration in response to inflammatory conditions, acid-sensing ion channels (ASICs) contribute to the pathology of MS. Consequently, ASICs are emerging as disease-modifying targets in MS. Surprisingly, as first demonstrated here, 4-AP inhibits neuronal degenerin/epithelial Na+ (Deg/ENaC) channels, including ASIC and BLINaC. This effect is specific for 4-AP compared with its heterocyclic base, pyridine, and the related derivative, 4-methylpyridine; and akin to the actions of 4-AP on the structurally unrelated Kv channels, dose- and voltage-dependent. 4-AP has differential actions on distinct ASICs, strongly inhibiting ASIC1a channels expressed in central neurons but being without effect on ASIC3, which is enriched in peripheral sensory neurons. The voltage dependence of the 4-AP block and the single binding site for this inhibitor are consistent with 4-AP binding in the pore of Deg/ENaC channels as it does Kv channels, suggesting a similar mechanism of inhibition in these two classes of channels. These findings argue that effects on both Kv and Deg/ENaC channels should be considered when evaluating the actions of 4-AP. Importantly, the current results are consistent with 4-AP influencing the symptoms of MS as well as the course of the disease because of inhibitory actions on Kv and ASIC channels, respectively.  相似文献   
2.
Summary Isolated heart ventricular preparations from rainbow trout were electrically stimulated to contraction. Following a temporary change in stimulation rate from 0.2 Hz to a higher value, the force fell to a minimum after which it increased and levelled off. Upon the return to 0.2 Hz a further transient increase in force appeared. The latter two responses were stimulated by an increased extracellular K+, which is known to inactivate the Na+ channel. The initial negative inotropic effect, in contrast to the two subsequent positive effects, was associated with a parallel decrease in amplitude of the action potential measured in 15 mM K+, used as an index of the Ca2+ influx. One micromolar (1 M) ryanodine did not affect either the negative or the positive responses due to an increase in stimulation rate, but depressed the force developed after prolonged periods of rest. Ten micromolar (10 M) adrenaline strongly inhibited the positive effects of an elevation of frequency. An elevation of extracellular Na+ from 141 to 166 mM had a similar effect. In conclusion, the positive effects occurring in 15 mM K+ do not seem to depend on the initial Na+ current. They may nevertheless depend on changes of the cellular Na+ balance as suggested by the effects of adrenaline, K+ and Na+. The functional role of the sarcoplasmic reticulum is unclear.  相似文献   
3.
Cells of the purple non-sulphur bacterium Rhodobacter sphaeroides express a high-affinity K+ uptake system when grown in media with low K+ concentrations. Antibodies againts the catalytic KdpB protein or the whole KdpABC complex of Escherichia coli crossreact with a 70.0 kDa R. sphaeroides protein that was expressed only in cells grown in media with low K+ concentrations. In membranes derived from R. sphaeroides cells grown with low K+ concentrations (induced cells), a high ATPase activity could be detected when assayed in Tris-HCl pH 8.0 containing 1 mM MgSO4. This ATPase activity increased upon addition of 1 mM KCl from 166 to 289 mol ATP hydrolysed x min-1 x g protein-1 (1.7-fold stimulation). The K+-stimulated ATPase activity was inhibited approximately 93% by 0.5 mM vanadate but hardly by N,N-dicyclohexylcarbo-diimide (DCCD). These results indicate that the inducible K+-ATPase in R. sphaeroides resembles the Kdp K+-translocating ATPase of Escherichia coli. This Kdp-like transport system is also expressed in R. capsulatus and Rhodospirillum rubrum during growth in media with low K+ concentrations suggesting a wide distribution of this transport system among phototrophic bacteria.Abbreviations electrical potential difference across the cytoplasmic membrane - pH pH difference across the cytoplasmic membrane - BSA bovine serum albumine - PAGE polyacrylamide gel electrophoresis - HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid - PMSF phenyl-methyl-sulfonyl fluoride - DCCD N,N-dicyclohexylcarbodiimide - AIB 2--aminoisobutyric acid - TMG methyl--d-thiogalactopyranoside  相似文献   
4.
5.
The inside-out mode of the patch-clamp technique was used to study adenosine-5-triphosphate (ATP)-sensitive K+ channels in mammalian skeletal muscle. Vanadate, applied to the cytoplasmic face of excised patches, was a potent activator of ATP-sensitive K+ channels. Divalent cations (Mg2+, Ca2+) were a prerequisite for the activating process. The maximal effect was achieved using 1 mM vanadate dissolved in Ringer, increasing the open-state probability about ninefold. The active 5 + redox form of vanadate which stimulates ATP-sensitive K+ channels is likely to be decavanadate V10O inf28 sup6– . ATP concentration-response curves have Hill coefficients near three in internal Na+-rich Ringer and between one and two in internal KCl solutions. Half maximal channel blockage was observed at ATP concentrations of 4 and 8 M in Ringer and KCl solutions, respectively. Internal vanadate shifted the curves towards higher ATP concentrations without affecting their slopes. Thus 50% channel blockage occurred at 65 M ATP in internal Ringer containing 0.5 mM vanadate. The results indicate that the affinity and stoichiometry of ATP binding to ATP-sensitive K+ channels are strongly modulated by internal cations and that the ATP sensitivity is weakened by vanadate. Offprint requests to: B. Neumcke  相似文献   
6.
The effect of phloretin (20-100 M), a dipolar organic compound, on the voltage clamp currents of the frog node of Ranvier has been investigated. The Na currents are simply reduced in size but not otherwise affected. Phloretin has no effect on the slow 4-aminopyridine-resistant K channels. However, the voltage dependence and time course of the fast K conductance (g K) is markedly altered. The g K(E) curve, determined by measuring fast tail currents at different pulse potentials, normally exhibits a bend at –50 mV indicating the existence of two types of fats K channels. Phloretin shifts the g K (E) curve to more positive potentials, reduces its slope and its maximum and abolishes the distinction between the two tpyes of fast K channels. The effect becomes more pronounced with time. Phloretin also markedly slows the opening of the fast K channels, but has much less effect on the closing. Opening can be accelerated again by a long depolarizing prepulse which presumably removes part of the phloretin block. It is concluded that phloretin selectively affects the fast K channels of the nodal membrane. The results are compared with similar observations on the squid giant axon. Offprint requests to: H. Meves  相似文献   
7.
Synaptosomes isolated from the rat cerebral cortex were mixed with sonicated phospholipid vesicles and subjected to freezing-thawing to acquire giant proteoliposomes. Membranes of these giant proteoliposome could thus be studied using patch-clamp techniques. Single-channel currents were measured with the inside-out patch of the membrane, in KCl solutions. Three different potassium channels were detected and unit conductances were 15.1, 28.6 and 91.0 pS, respectively, in a symmetrical 150 mM KCl solution. All these channels are more permeable to potassium than to sodium ions, the permeability ratio being about 2:1. Tetraethylammonium ions blocked these channels. The gating of these potassium channels is independent of the membrane potential, Presumably, these channels play a role in the resting membrane potential of presynaptic nerve terminals.  相似文献   
8.
Summary Information is limited on soil contamination of leaves from field-grown row crops, especially with respect to aluminum (Al) analyses. The objective of this study was to determine the influence of washing leaf samples with either deionized water or detergent solution on elemental analyses for several agronomic crop plants. The crop plants sampled were corn (Zea mays L.), soybean (Glycine max L. Merr.), grain sorghum (Sorghum bicolor L. Moench), and wheat (Triticum aestivum L.). The crops were grown on a range of soil types, soil pH values, and tillage practices. Samples of upper leaves and lower leaves were collected separately. The samples were either not washed, washed with deionized water, or washed with detergent solution. After drying, grinding, and digesting, the samples were analyzed for Al, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu). For all crop plants and conditions studied, there was no effect on measured N, P, K, Ca, Mg, Mn, Zn, or Cu concentrations, but measured Al and Fe concentrations were influenced by washing. In general, washing had a greater effect on Al analyses than on Fe analyses. Soybean samples were most affected by washing, while wheat samples seemed to be least affected. The results reflected greater contamination of lower leaves than upper leaves. Decontamination procedures appear necessary prior to Al and Fe analyses of field-grown crop plants.  相似文献   
9.
Summary As a result of air pollution, considerable deposition of ammonium sulphate occurs on vegetation and soil in the vicinity of chicken farms and fields dressed with animal slurry. A clear relation exists between this ammonium sulphate deposition and the distance to certain agricultural activities. Field investigations and ecophysiological experiments both show that the needles ofPinus nigra var.maritima (Ait.) Melville take up ammonium and excrete potassium, magnesium and calcium. This often results in potassium and/or magnesium deficiencies and may lead to premature shedding of needles. The high levels of nitrogen in the needles are strongly correlated to fungal diseases.Whether the observed cation leaching will result in disturbed nutrient budgets depends mainly on soil conditions. Leaching of K, Mg and Ca from the soil, caused by ammonium sulphate, may further inhibit nutrient uptake.Field investigations show a clear correlation between increased ratios of NH4 to K, Mg and Ca in the soil solution and the damage to pine forests.  相似文献   
10.
Modulation of acetylcholine (ACh) release from superfused hippocampal slices was examined when the release of ACh was stimulated by exposure of slices to elevated K+ concentration. Evoked release was not sensitive to inhibition by 0.1 microM tetrodotoxin, but it could be inhibited in a dose-dependent manner by a muscarinic agonist (10-100 nM oxotremorine) and a purinergic agonist (10-100 nM 2-chloroadenosine). The alpha-dendrotoxin (100 nM), which selectively blocks voltage-gated inactivating K+ channels in nerve endings, did not affect the release of ACh under resting or depolarized conditions. However, alpha-dendrotoxin reduced the 2-chloroadenosine-induced inhibition of release, but did not alter the oxotremorine-induced inhibition. These results suggest that an alpha-dendrotoxin-sensitive K+ channel may be activated as an obligatory step in the modulation of ACh release by presynaptic purinergic receptor activation, but not in the modulation by presynaptic muscarinic receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号