首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   5篇
  2023年   1篇
  2021年   2篇
  2019年   2篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2012年   2篇
  2010年   1篇
  2009年   2篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
Chromosome C-band patterns have been studied in 34 populations of the Australian annualBulbine group, which comprises 4x (2n = 26, 28), 8x (2n = 52, 54) and 12x (2n = 78) populations. The 2n = 26B. semibarbata populations have a simple, low heterochromatin pattern with very minor polytypic variation. The 2n = 28 populations, corresponding morphologically to a group given separate status asB. alata, are similar in pattern but exhibit pronounced enhancement of telomeric and, more particularly, centromeric dot bands. NOR heterochromatin and satellites are difficult to identify inB. alata but appear to occur in different positions from the 26-chromosome karyotype. Eastern Australian 8 x patterns are consistent with a proposed hybrid ancestry,B. semibarbata ×B. alata. Annual and perennial C-band profiles in the AustralianBulbine are discussed briefly in relation to the additive and transformation models of heterochromatin evolution and to the possible adaptive significance of variation in heterochromatin content.Cytoevolution in the AustralianBulbine 2; for part 1 see Pl. Syst. Evol.157, 201–217.  相似文献   
2.
Summary Several sweet potato genotypes were found to lack completely or to have only traces of-amylase in their storage roots. Such genotypes do not increase in sweetness during cooking because, without a sufficient amount of-amylase, the normal hydrolysis of starch to maltose does not occur in the cooking process. In order to study the inheritance of this biochemical variant in the genotype, 41 families were generated. The following conclusions were drawn from analyzing these families. (1) This trait is controlled by one recessive allele (designated-amy) (2) It is inherited in a hexasomic or tetradisomic manner, but not disomically or tetrasomically. This conclusion supports previous cytological data that sweet potato is an autohexaploid or has two identical genomes plus one genome which is somewhat different. (3) The-amy allele appears to exist at a high frequency in cultivated germplasm. (4) Breeding sweet potato for low-amylase activity is relatively easy. New types of sweet potato without normal-amylase activity have great potential for processing and as a staple food.  相似文献   
3.
Hardy–Weinberg proportions (HWP) are often explored to evaluate the assumption of random mating. However, in autopolyploids, organisms with more than two sets of homologous chromosomes, HWP and random mating are different hypotheses that require different statistical testing approaches. Currently, the only available methods to test for random mating in autopolyploids (i) heavily rely on asymptotic approximations and (ii) assume genotypes are known, ignoring genotype uncertainty. Furthermore, these approaches are all frequentist, and so do not carry the benefits of Bayesian analysis, including ease of interpretability, incorporation of prior information, and consistency under the null. Here, we present Bayesian approaches to test for random mating, bringing the benefits of Bayesian analysis to this problem. Our Bayesian methods also (i) do not rely on asymptotic approximations, being appropriate for small sample sizes, and (ii) optionally account for genotype uncertainty via genotype likelihoods. We validate our methods in simulations and demonstrate on two real datasets how testing for random mating is more useful for detecting genotyping errors than testing for HWP (in a natural population) and testing for Mendelian segregation (in an experimental S1 population). Our methods are implemented in Version 2.0.2 of the hwep R package on the Comprehensive R Archive Network https://cran.r-project.org/package=hwep .  相似文献   
4.
The genome‐wide association studies (GWASs) are essential to determine the genetic bases of either ecological or economic phenotypic variation across individuals within populations of the model and nonmodel organisms. For this research question, the GWAS replication testing different parameters and models to validate the results'' reproducibility is common. However, straightforward methodologies that manage both replication and tetraploid data are still missing. To solve this problem, we designed the MultiGWAS, a tool that does GWAS for diploid and tetraploid organisms by executing in parallel four software packages, two designed for polyploid data (GWASpoly and SHEsis) and two designed for diploid data (GAPIT and TASSEL). MultiGWAS has several advantages. It runs either in the command line or in a graphical interface; it manages different genotype formats, including VCF. Moreover, it allows control for population structure, relatedness, and several quality control checks on genotype data. Besides, MultiGWAS can test for additive and dominant gene action models, and, through a proprietary scoring function, select the best model to report its associations. Finally, it generates several reports that facilitate identifying false associations from both the significant and the best‐ranked association Single Nucleotide Polymorphisms (SNPs) among the four software packages. We tested MultiGWAS with public tetraploid potato data for tuber shape and several simulated data under both additive and dominant models. These tests demonstrated that MultiGWAS is better at detecting reliable associations than using each of the four software packages individually. Moreover, the parallel analysis of polyploid and diploid software that only offers MultiGWAS demonstrates its utility in understanding the best genetic model behind the SNP association in tetraploid organisms. Therefore, MultiGWAS probed to be an excellent alternative for wrapping GWAS replication in diploid and tetraploid organisms in a single analysis environment.  相似文献   
5.
6.
Using the AFLP technique highly informative DNA fingerprints were generated from 19 taxa ofSolanum sect.Petota (potatoes) and three taxa ofSolanum sect.Lycopersicum (tomatoes). Both phenetic and cladistic analyses were conducted from the individual genotypic level to the species level. An AFLP fingerprint, using a combination of suitable AFLP primers, generated 12 to 71 scorable fragments per genotype which was sufficient for taxonomic interpretation. The classifications based on the molecular markers were generally in agreement with current taxonomic opinions. Unexpectedly,S. microdontum was associated with ser.Megistacroloba rather than with ser.Tuberosa, andS. demissum (ser.Demissa) and species of ser.Acaulia appeared closely affiliated. AFLP is an efficient and reliable technique to generate biosystematic data and therefore a promising tool for evolutionary studies.  相似文献   
7.
Copy number variation (CNV) is implicated in important traits in multiple crop plants, but can be challenging to genotype using conventional methods. The Rhg1 locus of soybean, which confers resistance to soybean cyst nematode (SCN), is a CNV of multiple 31.2‐kb genomic units each containing four genes. Reliable, high‐throughput methods to quantify Rhg1 and other CNVs for selective breeding were developed. The CNV genotyping assay described here uses a homeologous gene copy within the paleopolyploid soybean genome to provide the internal control for a single‐tube TaqMan copy number assay. Using this assay, CNV in breeding populations can be tracked with high precision. We also show that extensive CNV exists within Fayette, a released, inbred SCN‐resistant soybean cultivar with a high copy number at Rhg1 derived from a single donor parent. Copy number at Rhg1 is therefore unstable within a released variety over a relatively small number of generations. Using this assay to select for individuals with altered copy number, plants were obtained with both increased copy number and increased SCN resistance relative to control plants. Thus, CNV genotyping technologies can be used as a new type of marker‐assisted selection to select for desirable traits in breeding populations, and to control for undesirable variation within cultivars.  相似文献   
8.
This commentary is a tribute to the late colleague, Prof. Michael D. Ter-Avanesyan – prominent contributor into knowledge about prion maintenance and function. The commentary describes his early steps in genetics which brought him into prion research.  相似文献   
9.
Polyploidy and gametophytic apomixis are two important and associated processes in plants. Many hawthorn species are polyploids and can reproduce both sexually and apomictically. However, the population genetic structure of these species is poorly understood. Crataegus douglasii is represented exclusively by self-compatible tetraploid pseudogamous apomicts across North America, whereas Crataegus suksdorfii found in the Pacific Northwest is known to include self-incompatible diploid sexuals as well as polyploid apomicts. We compare population structure and genetic variability in these two closely related taxa using microsatellite and chloroplast sequence markers. Using 13 microsatellite loci located on four linkage groups, 251 alleles were detected in 239 individuals sampled from 15 localities. Within-population multilocus genotypic variation and molecular diversity are greatest in diploid sexuals and lowest in triploid apomicts. Apart from the isolation of eastern North American populations of C. douglasii , there is little evidence of isolation by distance in this taxon. Genetic diversity in western populations of C. douglasii suggests that gene flow is frequent, and that colonization and establishment are often successful. In contrast, local populations of C. suksdorfii are more markedly differentiated. Gene flow appears to be limited primarily by distance in diploids and by apomixis and self-compatibility in polyploids. We infer that apomixis and reproductive barriers between cytotypes are factors that reduce the frequency of gene flow among populations, and may ultimately lead to allopatric speciation in C. suksdorfii . Our findings shed light on evolution in woody plants that show heterogeneous ploidy levels and reproductive systems.  相似文献   
10.
Over 3.5 million expressed sequence tags from the major cereal taxa were used to electronically mine over 176 000 putative single nucleotide polymorphisms (SNPs). The density, distribution and degree of linkage between these SNPs were compared among the different taxa. The frequency of sequence polymorphism was lowest in diploid taxa (rice, barley and sorghum), intermediate in tetraploid maize and highest in allohexaploid wheat and octoploid sugarcane. SNPs were further categorized as either intravarietal (differences between gene family members and homoeologues) or varietal (differences between two varieties), and as either co-segregating or non-co-segregating with neighbouring polymorphisms. Varietal co-segregating SNPs represent the best candidates for molecular markers as they show variation between varieties and have a high probability of being validated, as sequencing errors are unlikely to co-segregate with one another. This elite class of SNPs was most abundant in barley and least abundant in wheat and rice. Despite the large number of observed sequence polymorphisms in allohexaploid wheat, only a fraction of those available are likely to make good molecular markers. In addition, we found that rice SNPs up to 10 kb apart were in linkage disequilibrium (LD), but that high levels of LD attributable to population structure confounded the tracking of LD over greater distances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号