首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   1篇
  8篇
  2022年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
Summary Prochlorophytes similar toProchloron sp. andProchlorothrix hollandica have been suggested as possible progenitors of the plastids of green algae and land plants because they are prokaryotic organisms that possess chlorophyllb (chlb). We have sequenced theProchlorothrix genes encoding the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco),rbcL andrbcS, for comparison with those of other taxa to assess the phylogenetic relationship of this species. Length differences in the large subunit polypeptide among all sequences compared occur primarily at the amino terminus, where numerous short gaps are present, and at the carboxy terminus, where sequences ofAlcaligenes eutrophus and non-chlorophyllb algae are several amino acids longer. Some domains in the small subunit polypeptide are conserved among all sequences analyzed, yet in other domains the sequences of different phylogenetic groups exhibit specific structural characteristics. Phylogenetic analyses ofrbcL andrbcS using Wagner parsimony analysis of deduced amino acid sequences indicate thatProchlorothrix is more closely related to cyanobacteria than to the green plastid lineage. The molecular phylogenies suggest that plastids originated by at least three separate primary endosymbiotic events, i.e., once each leading to green algae and land plants, to red algae, and toCyanophora paradoxa. TheProchlorothrix rubisco genes show a strong GC bias, with 68% of the third codon positions being G or C. Factors that may affect the GC content of different genomes are discussed.  相似文献   
3.
A model has been proposed suggesting that the tRNA molecule must have originated by direct duplication of an RNA hairpin structure [Di Giulio, M., 1992. On the origin of the transfer RNA molecule. J. Theor. Biol. 159, 199-214]. A non-monophyletic origin of this molecule has also been theorized [Di Giulio, M., 1999. The non-monophyletic origin of tRNA molecule. J. Theor. Biol. 197, 403-414]. In other words, the tRNA genes evolved only after the evolutionary stage of the last universal common ancestor (LUCA) through the assembly of two minigenes codifying for different RNA hairpin structures, which is what the exon theory of genes suggests when it is applied to the model of tRNA origin. Recent observations strongly corroborate this theorization because it has been found that some tRNA genes are completely separate in two minigenes codifying for the 5' and 3' halves of this molecule [Randau, L., et al., 2005a. Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5'- and 3'-halves. Nature 433, 537-541]. In this paper it is shown that these tRNA genes codifying for the 5' and 3' halves of this molecule are the ancestral form from which the tRNA genes continuously codifying for the complete tRNA molecule are thought to have evolved. This, together with the very existence of completely separate tRNA genes codifying for their 5' and 3' halves, proves a non-monophyletic origin for tRNA genes, as a monophyletic origin would exclude the existence of these genes which have, on the contrary, been observed. Here the polyphyletic origin of genes codifying for proteins is also suggested and discussed. Moreover, a hypothesis is advanced to suggest that the LUCA might have had a fragmented genome made up of RNA and the possibility that 'Paleokaryotes' may exist is outlined. Finally, the characteristic of the indivisibility of homology that these polyphyletic origins seem to remove at the sequence level is discussed.  相似文献   
4.
An evolutionary analysis is conducted on the permuted tRNA genes of Cyanidioschyzon merolae, in which the 5′ half of the tRNA molecule is codified at the 3′ end of the gene and its 3′ half is codified at the 5′ end. This analysis has shown that permuted genes cannot be considered as derived traits but seem to possess characteristics that suggest they are ancestral traits, i.e. they originated when tRNA molecule genes originated for the first time. In particular, if the hypothesis that permuted genes are a derived trait were true, then we should not have been able to observe that the most frequent class of permuted genes is that of the anticodon loop type, for the simple reason that this class would derive by random permutation from a class of non-permuted tRNA genes, which instead is the rarest. This would not explain the high frequency with which permuted tRNA genes with perfectly separate 5′ and 3′ halves were observed. Clearly the mechanism that produced this class of permuted genes would envisage the existence, in an advanced stage of evolution, of minigenes codifying for the 5′ and 3′ halves of tRNAs which were assembled in a permuted way at the origin of the tRNA molecule, thus producing a high frequency of permuted genes of the class here referred. Therefore, this evidence supports the hypothesis that the genes of the tRNA molecule were assembled by minigenes codifying for hairpin-like RNA molecules, as suggested by one model for the origin of tRNA [Di Giulio, M., 1992. On the origin of the transfer RNA molecule. J. Theor. Biol. 159, 199–214; Di Giulio, M., 1999. The non-monophyletic origin of tRNA molecule. J. Theor. Biol. 197, 403–414]. Moreover, the late assembly of the permuted genes of C. merolae, as well as their ancestrality, strengthens the hypothesis of the polyphyletic origins of these genes. Finally, on the basis of the uniqueness and the ancestrality of these permuted genes, I suggest that the root of the Eukarya domain is in the super-ensemble of the Plantae and that the Rhodophyta to which C. merolae belongs are the first line of divergence.  相似文献   
5.
Summary We sequenced the 3-terminal part of the COX3 gene encoding cytochrome c oxidase subunit 3 from mitochondria of Phytophthora parasitica (phylum Oomycota, kingdom Protoctista). Comparison of the sequence with known COX3 genes revealed that UGG is used as a tryptophan codon in contrast to UGA in the mitochondrial codes of most organisms other than green plants. A very high AT mutation pressure operates on the mitochondrial genome of Phytophthora, as revealed by codon usage and by A + T content of noncoding regions, which seems paradoxical because AT pressure causes tryptophan codon reassignment from UGG to UGA in mitochondria of most species. The genetic code and other data suggest that mitochondria of Oomycota share a direct common ancestor with mitochondria of plants and that mitochondria of the ancestor of Planta and Oomycota were acquired in a second endosymbiotic event, which occurred later than the acquisition of mitochondria by other eukaryotes.Offprint requests to: P. Karlovsky  相似文献   
6.
7.
The genes encoding for heat shock protein 40 (Hsp40 or DnaJ) homologs were cloned and sequenced from the archaebacterium Halobacterium cutirubrum and the eubacterium Deinococcus proteolyticus to add to sequences from the gene banks. These genes were identified downstream of the Hsp70 (or DnaK) genes in genomic fragments spanning this region and, as in other prokaryotic species, Hsp70-Hsp40 genes are likely part of the same operon. The Hsp40 homolog from D. proteolyticus was found to be lacking a central 204 base pair region present in H. cutirubrum that encodes for the four cysteine-rich domains of the repeat consensus sequence CxxCxGxG (where x is any amino acid), present in most Hsp40 homologs. The available sequences from various archaebacteria, eubacteria, and eukaryotes show that the same deletion is also present in the homologs from Thermus aquaticus and two cyanobacteria, but in no other species tested. This unique deletion and the clustering of homologs from the Deinococcus–Thermus group and cyanobacterial species in the Hsp40 phylogenetic trees suggest a close evolutionary relationship between these groups as was also shown recently for Hsp70 sequences (R.S. Gupta et al., J Bacteriol 179:345–357, 1997). Sequence comparisons indicate that the Hsp40 homologs are not as conserved as the Hsp70 sequences. Phylogenetic analysis provides no reliable information concerning evolutionary relationship between prokaryotes and eukaryotes and their usefulness in this regard is limited. However, in phylogenetic trees based on Hsp40 sequences, the two archaebacterial homologs showed a polyphyletic branching within Gram-positive bacteria, similar to that seen with Hsp70 sequences. Received: 30 January 1997 / Accepted: 22 March 1997  相似文献   
8.
裸盖菇属的真菌鉴定及分子系统学初探   总被引:1,自引:0,他引:1  
裸盖菇属(Psilocybe)的许多真菌含有神经致幻型毒素,这些毒素被中国卫生部列为A类管制药品。在药检时,这些真菌样品通常是粉末。因此,仅依靠形态分类鉴定该类真菌非常困难。研究采用ITS序列分析的方法鉴定该类真菌并初步探讨了该属种间的系统发育关系。由系统发育树推断Psilocybe属可能是多源进化的。通过序列分析可以鉴定真菌样品为Psilocybe属。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号