首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
An acetyl-histone peptide library was used to determine the thermodynamic parameters that define acetylation-dependent bromodomain-histone interactions. Bromodomains interact with histones by binding acetylated lysines. The bromodomain used in this study, BrD3, is derived from the polybromo-1 protein, which is a subunit of the PBAF chromatin remodeling complex. Steady-state fluorescence anisotropy was used to examine the variations in specificity and affinity that drive molecular recognition. Temperature and salt concentration dependence studies demonstrate that the hydrophobic effect is the primary driving force, consistent with lysine acetylation being required for binding. An electrostatic effect was observed in only two complexes where the acetyl-lysine was adjacent to an arginine. The large change in heat capacity determined for the specific complex suggests that the dehydrated BrD3-histone interface forms a tightly bound, high-affinity complex with the target site. These explorations into the thermodynamic driving forces that confer acetylation site-dependent BrD3-histone interactions improve our understanding of how individual bromodomains work in isolation. Furthermore, this work will permit the development of hypotheses regarding how the native Pb1, and the broader class of bromodomain proteins, directs multisubunit chromatin remodeling complexes to specific acetyl-nucleosome sites in vivo.  相似文献   
2.
3.
Stopped-flow fluorescence anisotropy was used to determine the kinetic parameters that define acetylation-dependent bromodomain-histone interactions. Bromodomains are acetyllysine binding motifs found in many chromatin associated proteins. Individual bromodomains were derived from the polybromo-1 protein, which is a subunit of the PBAF chromatin-remodeling complex that has six tandem bromodomains in the amino-terminal region. The average k(on) and k(off) values for the formation of high-affinity complexes are 275 M(-1) s(-1) and 0.41 x 10(-3) s(-1), respectively. The average k(on) and k(off) values for the formation of low-affinity complexes are 119 M(-1) s(-1) and 1.42 x 10(-3) s(-1), respectively. Analysis of the on- and off-rates yields acetylation site-dependent equilibrium dissociation constants averaging 1.4 and 12.9 microM for high- and low-affinity complexes, respectively. This work represents the first examination of kinetic mechanisms of acetylation-dependent bromodomain-histone interactions.  相似文献   
4.
The human polybromo-1 protein is thought to localize the Polybromo, BRG1-associated factors chromatin-remodeling complex to kinetochores during mitosis via direct interaction of its six tandem bromodomains with acetylated nucleosomes. Bromodomains are acetyl-lysine binding modules roughly 100 amino acids in length originally found in chromatin associated proteins. Previous studies verified acetyl-histone binding by each bromodomain, but site-specificity, a central tenet of the histone code hypothesis, was not examined. Here, the acetylation site-dependence of bromodomain-histone interactions was examined using steady-state fluorescence anisotropy. Results indicate that single bromodomains bind specific acetyl-lysine sites within the histone tail with sub-micromolar affinity. Identification of duplicate target sites suggests that native Pb1 interacts with both copies of histone H3 upon nucleosome assembly. Quantitative analysis of single bromodomain-histone interactions can be used to develop hypotheses regarding the histone acetylation pattern that acts as the binding target of the native polybromo-1 protein.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号