首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  2020年   1篇
  2018年   2篇
  2014年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2006年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
The lymphatic system plays an important role in cancer metastasis and inhibition of lymphangiogenesis could be valuable in fighting cancer dissemination. Podoplanin (Pdpn) is a small, transmembrane glycoprotein expressed on the surface of lymphatic endothelial cells (LEC). During mouse development, binding of Pdpn to the C-type lectin-like receptor 2 (CLEC-2) on platelets is critical for the separation of the lymphatic and blood vascular systems. Competitive inhibition of Pdpn functions with a soluble form of the protein, Pdpn-Fc, leads to reduced lymphangiogenesis in vitro and in vivo. However, the transgenic overexpression of human Pdpn-Fc in mouse skin causes disseminated intravascular coagulation due to platelet activation via CLEC-2. In the present study, we produced and characterized a mutant form of mouse Pdpn-Fc, in which threonine 34, which is considered essential for CLEC-2 binding, was mutated to alanine (PdpnT34A-Fc). Indeed, PdpnT34A-Fc displayed a 30-fold reduced binding affinity for CLEC-2 compared with Pdpn-Fc. This also translated into fewer side effects due to platelet activation in vivo. Mice showed less prolonged bleeding time and fewer embolized vessels in the liver, when PdpnT34A-Fc was injected intravenously. However, PdpnT34A-Fc was still as active as wild-type Pdpn-Fc in inhibiting lymphangiogenesis in vitro and also inhibited lymphangiogenesis in vivo. These data suggest that the function of Pdpn in lymphangiogenesis does not depend on threonine 34 in the CLEC-2 binding domain and that PdpnT34A-Fc might be an improved inhibitor of lymphangiogenesis with fewer toxic side effects.  相似文献   
2.
The lymphatic vascular system is a one‐direction network of thin‐walled capillaries and larger vessels covered by a continuous layer of endothelial cells responsible for maintaining fluid homeostasis. Some of the main functions of the lymphatic vasculature are to drain fluid from the extracellular spaces and return it back to the blood circulation, lipid absorption from the intestinal tract, and transport of immune cells to lymphoid organs. A number of genes controlling the development of the mammalian lymphatic vasculature have been identified in the last few years, and their functional roles started to be characterized using gene inactivation approaches in mice. Unfortunately, only few mouse Cre strains relatively specific for lymphatic endothelial cells (LECs) are currently available. In this article, we report the generation of a novel Podoplanin (Pdpn) GFPCre transgenic mouse strain using its 5’ regulatory region. Pdpn encodes a transmembrane mucin‐type O‐glycoprotein that is expressed on the surface of embryonic and postnatal LECs, in addition to few other cell types. Our detailed characterization of this novel strain indicates that it will be a valuable additional genetic tool for the analysis of gene function in LECs.  相似文献   
3.
Mouse podoplanin (mPDPN) is a type I transmembrane sialoglycoprotein, which is expressed on lymphatic endothelial cells, podocytes of the kidney, and type I alveolar cells of the lung. mPDPN is known as a platelet aggregation-inducing factor and possesses four platelet aggregation-stimulating (PLAG) domains: PLAG1, PLAG2, and PLAG3 in the N-terminus and PLAG4 in the middle of the mPDPN protein. mPDPN overexpression in cancers has been reportedly associated with hematogenous metastasis through interaction with the C-type lectin-like receptor 2 of platelets. We previously reported a rat anti-mPDPN monoclonal antibody clone PMab-1, which was developed by immunizing the PLAG2 and PLAG3 domains of mPDPN. PMab-1 is very useful in flow cytometry, western blot, and immunohistochemical analyses to detect both normal cells and cancers. However, the binding epitope of PMab-1 remains to be clarified. In the present study, flow cytometry, enzyme-linked immunosorbent assay, and immunohistochemical analyses were utilized to investigate the epitope of PMab-1. The results revealed that the critical epitope of PMab-1 is Asp39 and Met41 of mPDPN. These findings can be applied to the production of more functional anti-mPDPN monoclonal antibodies.  相似文献   
4.
CLEC-2 has been described recently as playing crucial roles in thrombosis/hemostasis, tumor metastasis, and lymphangiogenesis. The snake venom rhodocytin is known as a strong platelet activator, and we have shown that this effect is mediated by CLEC-2 (Suzuki-Inoue, K., Fuller, G. L., García, A., Eble, J. A., Pöhlmann, S., Inoue, O., Gartner, T. K., Hughan, S. C., Pearce, A. C., Laing, G. D., Theakston, R. D., Schweighoffer, E., Zitzmann, N., Morita, T., Tybulewicz, V. L., Ozaki, Y., and Watson, S. P. (2006) Blood 107, 542–549). Podoplanin, which is expressed on the surface of tumor cells, is an endogenous ligand for CLEC-2 and facilitates tumor metastasis by inducing platelet aggregation. Mice deficient in podoplanin, which is also expressed on the surface of lymphatic endothelial cells, show abnormal patterns of lymphatic vessel formation. In this study, we report on the generation and phenotype of CLEC-2-deficient mice. These mice are lethal at the embryonic/neonatal stages associated with disorganized and blood-filled lymphatic vessels and severe edema. Moreover, by transplantation of fetal liver cells from Clec-2−/− or Clec-2+/+ embryos, we were able to demonstrate that CLEC-2 is involved in thrombus stabilization in vitro and in vivo, possibly through homophilic interactions without apparent increase in bleeding tendency. We propose that CLEC-2 could be an ideal novel target protein for an anti-platelet drug, which inhibits pathological thrombus formation but not physiological hemostasis.  相似文献   
5.
The mucin-type sialoglycoprotein, podoplanin (aggrus), is a platelet-aggregating factor on cancer cells. We previously described up-regulated expression of podoplanin in malignant astrocytic tumors including glioblastoma. Its expression was associated with tumor malignancy. In the present study, we investigated podoplanin expression and platelet-aggregating activities of glioblastoma cell lines. First, we established a highly reactive anti-podoplanin antibody, NZ-1, which inhibits podoplanin-induced platelet aggregation completely. Of 15 glioblastoma cell lines, LN319 highly expressed podoplanin and induced platelet aggregation. Glycan profiling using a lectin microarray showed that podoplanin on LN319 possesses sialic acid, which is important in podoplanin-induced platelet aggregation. Interestingly, NZ-1 neutralized platelet aggregation by LN319. These results suggest that podoplanin is a main reason for platelet aggregation induced by LN319. We infer that NZ-1 is useful to determine whether platelet aggregation is podoplanin-specific or not. Furthermore, podoplanin might become a therapeutic target of glioblastoma for antibody-based therapy.  相似文献   
6.
The aim of this study was to determine if podoplanin was expressed by rudiment chondrocytes in human foetal cartilages. Podoplanin was immunolocalised in first trimester human foetal rib and knee joint rudiments to a sub-population of chondrocytes deep in the rib rudiments, tibial and femoral growth plates and cells associated with the cartilage canals of the foetal knee joint rudiments. Lymphatic vessels in the loose stromal tissues surrounding the developing rudiments were also demonstrated on the same histology slides using antipodoplanin (MAb D2-40) and anti-LYVE-1 and differentiated from CD-31 positive blood vessels confirming the discriminative capability of the antibody preparations used. The D2-40 positive rib and knee rudiment chondrocytes were not stained with antibodies to LYVE-1, CD-31 or CD-34 however perlecan was a prominent pericellular proteoglycan around these cells confirming their chondrogenic phenotype. Discernable differences were evident between the surface and deep rudiment chondrocytes in terms of their antigen reactivities detected with MAb D2-40 or antiperlecan antibodies. Binding of the cytoplasmic tail of PDPN to the ERM proteins ezrin, radixin and moeisin may result in changes in cytoskeletal organisation which alter the phenotype of this central population of rudiment cells. This may contribute to morphological changes in the rudiment cartilages which lead to establishment of the primary ossification centres and is consistent with their roles as transient developmental scaffolds during tissue development.  相似文献   
7.
A functional renin-angiotensin system (RAS) is required for normal kidney development. Neonatal inhibition of the RAS in rats results in long-term pathological renal phenotype and causes hyaluronan (HA), which is involved in morphogenesis and inflammation, to accumulate. To elucidate the mechanisms, intrarenal HA content was followed during neonatal completion of nephrogenesis with or without angiotensin converting enzyme inhibition (ACEI) together with mRNA expression of hyaluronan synthases (HAS), hyaluronidases (Hyal), urinary hyaluronidase activity and cortical lymphatic vessels, which facilitate the drainage of HA from the tissue. In 6-8 days old control rats cortical HA content was high and reduced by 93% on days 10-21, reaching adult low levels. Medullary HA content was high on days 6-8 and then reduced by 85% to 12-fold above cortical levels at day 21. In neonatally ACEI-treated rats the reduction in HA was abolished. Temporal expression of HAS2 corresponded with the reduction in HA content in the normal kidney. In ACEI-treated animals cortical HAS2 remained twice the expression of controls. Medullary Hyal1 increased in controls but decreased in ACEI-treated animals. Urine hyaluronidase activity decreased with time in control animals while in ACEI-treated animals it was initially 50% lower and did not change over time. Cells expressing the lymphatic endothelial mucoprotein podoplanin in ACEI-treated animals were increased 18-fold compared to controls suggesting compensation. In conclusion, the high renal HA content is rapidly reduced due to reduced HAS2 and increased Hyal1 mRNA expressions. Normal angiotensin II function is crucial for inducing these changes. Due to the extreme water-attracting and pro-inflammatory properties of HA, accumulation in the neonatally ACEI-treated kidneys may partly explain the pathological renal phenotype of the adult kidney, which include reduced urinary concentration ability and tubulointerstitial inflammation.  相似文献   
8.
9.
The platelet activation receptor CLEC-2 plays crucial roles in thrombosis/hemostasis, tumor metastasis, and lymphangiogenesis, although its role in thrombosis/hemostasis remains controversial. An endogenous ligand for CLEC-2, podoplanin, is expressed in lymphatic endothelial cells (LECs). We and others have reported that CLEC-2-deficiency is lethal at mouse embryonic/neonatal stages associated with blood-filled lymphatics, indicating that CLEC-2 is essential for blood/lymphatic vessel separation. However, its mechanism, and whether CLEC-2 in platelets is necessary for this separation, remains unknown. We found that specific deletion of CLEC-2 from platelets leads to the misconnection of blood/lymphatic vessels. CLEC-2(+/+) platelets, but not by CLEC-2(-/-) platelets, inhibited LEC migration, proliferation, and tube formation but had no effect on human umbilical vein endothelial cells. Additionally, supernatants from activated platelets significantly inhibited these three functions in LECs, suggesting that released granule contents regulate blood/lymphatic vessel separation. Bone morphologic protein-9 (BMP-9), which we found to be present in platelets and released upon activation, appears to play a key role in regulating LEC functions. Only BMP-9 inhibited tube formation, although other releasates including transforming growth factor-β and platelet factor 4 inhibited proliferation and/or migration. We propose that platelets regulate blood/lymphatic vessel separation by inhibiting the proliferation, migration, and tube formation of LECs, mainly because of the release of BMP-9 upon activation by CLEC-2/podoplanin interaction.  相似文献   
10.
The interaction of C-type lectin receptor 2 (CLEC-2) on platelets with Podoplanin on lymphatic endothelial cells initiates platelet signaling events that are necessary for prevention of blood-lymph mixing during development. In the present study, we show that CLEC-2 signaling via Src family and Syk tyrosine kinases promotes platelet adhesion to primary mouse lymphatic endothelial cells at low shear. Using supported lipid bilayers containing mobile Podoplanin, we further show that activation of Src and Syk in platelets promotes clustering of CLEC-2 and Podoplanin. Clusters of CLEC-2-bound Podoplanin migrate rapidly to the center of the platelet to form a single structure. Fluorescence lifetime imaging demonstrates that molecules within these clusters are within 10 nm of one another and that the clusters are disrupted by inhibition of Src and Syk family kinases. CLEC-2 clusters are also seen in platelets adhered to immobilized Podoplanin using direct stochastic optical reconstruction microscopy. These findings provide mechanistic insight by which CLEC-2 signaling promotes adhesion to Podoplanin and regulation of Podoplanin signaling, thereby contributing to lymphatic vasculature development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号